Supporting Information

Novel Ni–Ge–P anodes for lithium-ion batteries with enhanced reversibility and reduced redox potential

Guoping Liu,^a Nan Wang,^b Fangya Qi,^a Xiaoyi Lu,^a Yaohua Liang,^c and Zhipeng Sun*^a

^a School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

^b School of Materials & Energy, Lanzhou University, Gansu 730000, China

^c Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, South Dakota 57007, United States

* Corresponding author

Zhipeng Sun: zpsunxj@gdut.edu.cn

Fig. S1. The XRD result and the digital photo of the 14 h high-energy ball-milled Ni:P (1:1) mixed powder.

Fig. S2. The XRD pattern evolution of the ball-milled Ni: Ge: P (2: 1: 1) mixed powder after milling 8, 14, and 24 h.

Table S1. Structure parameters for Ni₂GeP/Ni₆Ge₂P as determined by Rietveld refinement of powder

Atom	Wyckoff site	x/a	y/b	z/c	Occupancy
Ni	4a	0	0	0	1
Ge	4c	0.75	0.310	0	0.5
Р	4c	0.75	0.310	0	0.5
Space group: 65.56%.	Amam (63); <i>a</i> =5.1288	Å, <i>b</i> =5.9995 Å	A, c = 3.4286 Å, c	$\alpha = \beta = \gamma = 90$	$)^{\circ}, wt. \% =$

XRD data at room temperature	:.
------------------------------	----

Atom	Wyckoff site	x/a	y/b	z/c	Occupancy		
Nil	3f	0.2580	0	0	1		
Ni2	3g	0.5886	0	0.5	1		
Ge1	1b	0	0	0.5	0.5		
P1	1b	0	0	0.5	0.5		
Ge2	2c	0.3333	0.6667	0	0.5		
P2	2c	0.3333	0.6667	0	0.5		
Space group: P-62m (189); $a = b = 5.9077$ Å, $c = 3.3656$ Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, $wt.\% = 34.44\%$.							

Table S2. Structure parameters for Ni₂P as determined by Rietveld refinement of powder XRD data at

room temperature.							
Atom	Wyckoff site	x/a	y/b	z/c	Occupancy		
Nil	3e	0.2575	0	0	1		
Ni2	3f	0.5957	0	0.5	1		
P1	1b	0	0	0.5	1		
P2	2d	0.3333	0.6667	0	1		
Space group: P321 (150); $a = b = 5.8923$ Å, $c = 3.3478$ Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$.							

Fig. S3. (a) XRD refinement result of the Ni₂P. (b) The bond length of Ni–P/Ge in Ni–P₅, Ni– (Ge_{0.5}P_{0.5})₅, Ni–P₄, and Ni–(Ge_{0.5}P_{0.5})₄ polyhedron.

Phases	Space group	a (Å)	b (Å)	c (Å)	α	β	γ	Volume (Å ³)	Volume/Atom (Å ³)
NiP	Pbca	6.0500	4.8819	6.8900	90°	90°	90°	203.5	12.7
NiGe _{0.5} P _{0.5}	Amam	5.1288	5.9995	3.4286	90°	90°	90°	105.5	13.2
Ni ₂ P	P321	5.8923	5.8923	3.3478	90°	90°	120°	100.7	11.2
Ni ₂ Ge _{0.5} P _{0.5}	P-62m	5.9077	5.9077	3.3656	90°	90°	120°	101.7	11.3

(a) (d) (c) Ni 2p P 2p Ni₂P survey Ni 2p_{3/2} O KLL Ni 2p Intensity (a. u.) Ni₂P Intensity (a.u.) Intensity (a.u.) Ni 2p_{1/2} , : 129.7 eV Ni-O Ni-O O 1s Ni₂P PO Cls P2p Satellite Ni LMM P_{2s} Ni 3p 1200 1000 800 600 400 200 880 875 870 865 860 855 850 136 134 132 130 0 128 126 Binding energy (eV) Binding energy (eV) Binding energy (eV) (b) (e) (f) Ni 2p P 2p & Ge 3p NiGe_{0.5}P_{0.5}/Ni₂Ge_{0.5}P_{0.5} survey Ni 2p_{3/2} $\underset{l_{a}}{\text{GeO}_{2}}_{\text{NiGe}_{0.5}P_{0.5}/\text{Ni}_{2}\text{Ge}_{0.5}P_{0.5}}$ NiGe0.5P0.5/Ni2Ge0.5P0.5 NiGeo Pos/N i,GeosPe Ni-O_{NiGe0.5}P0 O KLL Ni 2p Intensity (a. u.) Intensity (a.u.) Intensity (a.u.) 129.3 eV 852.6 eV Ni-O 20.5 eV O 1s atellit Ni LMM Ni 2p_{1/2} Satellit P 2p Ge LMM Ge 3p Ni 3p 135 1200 1000 800 600 200 880 870 865 860 855 850 130 115 400 0 875 125 120 Binding energy (eV) Binding energy (eV) Binding energy (eV)

Fig. S4. Full XPS spectra of (a) Ni₂P and (b) NiGe_{0.5}P_{0.5}/Ni₂Ge_{0.5}P_{0.5}. (c) Ni 2p and (d) P 2p high-resolution XPS spectra of Ni₂P. (e) Ni 2p and (f) P 2p, Ge 3p high-resolution XPS spectra of NiGe_{0.5}P_{0.5}/Ni₂Ge_{0.5}P_{0.5}.

Table S3. Crystal structure parameters of NiP, NiGe_{0.5}P_{0.5}, Ni₂P, and Ni₂Ge_{0.5}P_{0.5}.

Fig. S5. The Ge 3d high-resolution XPS spectrum of Ni₂Gep/Ni₆Ge₂P.

Fig. S6. Galvanostatic charge–discharge curves of Ni₂P composite at 50 mA g⁻¹ using 1 M LiPF₆ in EC: DMC (1:1 by Vol% with 5% FEC) as the electrolyte. (b) Cyclic voltammetry curves of the first three cycles of Ni₂P anode at 0.1 mV s⁻¹.

Fig. S7. cycle performance of the Ni₂P and NiGe_{0.5}P_{0.5}/Ni₂Ge_{0.5}P_{0.5} anode at a current of 1 A g⁻¹.

Fig. S8. Cross-sectional SEM images of the (a) Ni₂P electrode, (b) 50th cycled Ni₂P electrode, (c) NiGe_{0.5}P_{0.5}/Ni₂Ge_{0.5}P_{0.5} electrode, and (d) 50th NiGe_{0.5}P_{0.5}/Ni₂Ge_{0.5}P_{0.5} cycled electrode.

Fig. S9. (a) CV curves at different scan rates of Ni₂P. (b) The corresponding log(i) vs log(v) plots. (c) CV curve with pseudocapacitive contribution at 1.0 mV s⁻¹ (d) Normalized ratio of pseudocapacitive and diffusion-controlled contribution at different scan rates.

Fig. S10. (a) CV curves at different scan rates of NiGe_{0.5}P_{0.5}/Ni₂Ge_{0.5}P_{0.5}. (b) The corresponding log(*i*) vs log(*v*) plots. (c) CV curve with pseudocapacitive contribution at 1.0 mV s⁻¹ (d) Normalized ratio of pseudocapacitive and diffusion-controlled contribution at different scan rates.

Fig. S11. XRD results of ball milled Ni-P₃ and Ni-Ge-P₂.

Table S4. Structure parameters for NiGeP₂ and NiP as determined by Rietveld refinement of powder

NiGeP ₂ :						
Atom	Wyckoff site	x/a y/b		z/c	Occupancy	
Ni	8c	0.25	0.25	0	1	
Ge	24g	0.34218	0.13511	0	0.3333	
Р	24g	0.34218	0.13511	0	0.6667	
Space group:	Im-3 (204); $a = b = c$	$= 7.9284$ Å, $\alpha = 100$	$\beta = \gamma = 90^\circ, wt.\%$	∕₀ = 78.13%.		
NiP:						
Atom	Wyckoff site	x/a	y/b	z/c	Occupancy	
Ni	8c	0.04077	0.57306	0.20326	1	
Р	8c	0.2406	0.62704	0.57452	1	
Space group: 21 87%	P-62m (189); <i>a</i> = 4.94	146, <i>b</i> = 6.8736 Å	A, $c = 6.0831$ Å,	$\alpha = \beta = \gamma = 90^{\circ},$, <i>wt</i> .% =	

XRD data at room temperature.

Fig. S12. SEM image of the ball-milled Ni-P₃

Fig. S13. Cyclic voltammetry curves of the first three cycles of (a) Ni-Ge-P₂ and (b) Ni-P₃ anode at 0.1 $mV s^{-1}$.

Fig. S14. Normalized charge–discharge curve comparison of the Ni-P₃ *vs.* Ni-Ge-P₂ at third cycle with average discharge/charge potential and polarization gap.

Fig. S15. Cycle performance of the Ni-Ge-P₂ and Ni-P₃ anode at a current density of 50 mA g⁻¹.

Fig. S16. BET-N₂ adsorption/desorption isotherm of Ni-Ge-P₂/C.

Fig. S17. Discharge–charge curves of the Ni-Ge- P_2/C at 0.5–10 A g⁻¹.

Fig. S18. (a) Rate and (b) cycling performance comparison of the Ni-Ge-P₂/C and previously reported Ni-, Ge-, and P-based anode.¹⁻⁶

References

- Y. Wei, X. Liu, Y. Zhang, R. Yao, T. Zhai and H. Li, Synthesis and Fast Exfoliation of Layered GeP Nanosheets for Advanced Li-Ion Batteries, ACS Appl. Energy Mater., 2022, DOI: 10.1021/acsaem.2c03214.
- Z. Zhang, K. Sun, Y. Chen, H. Yang, G. Xie, Z. Yu, M. Zhang, Y. Zhang, W. Li, S. Chou and Y. Jiang, High Conductivity Cu₃Ge and High-Capacity GeO₂ Synergistically Enhance a Continuous Channel Ge-Based Anode for Lithium-Ion Batteries with Long-Life and Scalable Preparation, *Energy & Fuels*, 2022, **36**, 13390-13397.
- 3. G. Cai, Z. Wu, T. Luo, Y. Zhong, X. Guo, Z. Zhang, X. Wang and B. Zhong, 3D hierarchical rose-like Ni₂P@rGO assembled from interconnected nanoflakes as anode for lithium ion batteries, *RSC Adv.*, 2020, **10**, 3936-3945.
- 4. S. Tao, P. Cui, S. Cong, S. Chen, D. Wu, B. Qian, L. Song and A. Marcelli, Metal-organic framework-derived Ni₂P/nitrogen-doped carbon porous spheres for enhanced lithium storage, *Sci. China Mater.*, 2020, **63**, 1672-1682.
- 5. G. Li, H. Yang, F. Li, J. Du, W. Shi and P. Cheng, Facile formation of a nanostructured NiP₂@C material for advanced lithium-ion battery anode using adsorption property of metal–organic framework, *J. Mater. Chem.*, 2016, **4**, 9593-9599.
- Q. Liu, B. Chen, W. Liang, Y. Xu, G. Li, L. Shao, X. Shi and Z. Sun, Multi-heteroatom-Doped Carbon Matrix and N-Doped Carbon Shell Double Protection Enabled Superb Stability of Nickel Diselenide for Lithium Storage, ACS Appl. Energy Mater., 2022, DOI: 10.1021/acsaem.2c03051.