Supporting information

In situ surface/interface generation on Cu₂O nanostructures toward enhanced electrocatalytic CO₂ to ethylene using operando spectroscopy

Fangfang Chang¹, Yongpeng Liu¹, Juncai Wei¹, Lin Yang¹, and Zhengyu Bai^{*1}

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China. Email: baizhengyu2000@163.com

Fig. S1. (a) TEM images, (b) HR-TEM, (c) EDS-elemental mapping images of as-synthesized F-Cu₂O catalyst, and (d) TEM images, (e) HR-TEM, (f) EDS-elemental mapping images (Cu species were in red, and O species were in yellow) of surface reconstructed F-Cu₂O samples after reduction at -1.1 V vs. RHE.

Fig. 52. (a) TEM images, (b) HR-TEM, (c) EDS-elemental mapping images of as-synthesized O-Cu₂O catalyst, and (d) TEM images, (e) HR-TEM, (f) EDS-elemental mapping images (Cu species were in red, and O species were in yellow) of surface reconstructed O-Cu₂O samples after reduction at -1.1 V vs. RHE.

Fig. S3. HR-TEM (a, c) and EDS-elemental mapping images (b, and d, Cu species were in red, and O species were in yellow) of the square regions of T-Cu₂O viewed along the (a) [100], (d) [111] directions.

		Copper species (wt %)					
	Catalysts	Cu+	Cu ⁰	Cu⁺/Cu⁰			
	F-Cu ₂ O/Cu	41.6	58.4	0.71			
	O-Cu ₂ O/Cu	36.9	63.1	0.58			
	T-Cu ₂ O/Cu	61.6	38.4	1.60			

Table S1. The content of Cu⁺ and Cu⁰ on the surface of the Cu₂O samples after CO₂RR obtained by XPS

Fig. S6. LSV curves of F-Cu₂O/Cu (a), O-Cu₂O/Cu (b) and T-Cu₂O/Cu (c) catalysts in 0.1 M KHCO₃ with saturated N_2 (black line) and CO₂ (red line), respectively, at a 20 mV s⁻¹ scan rate.

Fig. 57. Electrochemical surface area (ECSA) measurement. CVs with various scan rates between 0.4 - 0.5 V vs. RHE in CO₂-saturated 0.1 M KHCO₃ solution for determining the double-layer capacitance (CdI) for (a) F-Cu₂O/Cu, (c) O-Cu₂O/Cu and (e) T-Cu₂O/Cu; double layer capacitance of (b) F-Cu₂O/Cu, (d) O-Cu₂O/Cu and (f) T-Cu₂O/Cu.

area to the DMSO peak area.

Table S2. The linear fitting analytic expressions and variances of the standard curves.									
Expression	C = a + b × Srelative								
Products	CH ₃ CH ₂ OH	CH₃OH	НСООН						
Intercept	-27.23	21.01	0.35						
Slope	2063.95	2965.42	10086.6						
R-Square	0.993	0.996	0.999						

Fig. S10. Faradaic efficiencies for C_2H_4 , CO, CH_4 and H_2 on (a) $F-Cu_2O/Cu$, (b) $O-Cu_2O/Cu$ and (c) $T-Cu_2O/Cu$ catalysts at different applied potentials.

Fig. S11. CV curves collected in N2-saturated 1 M KOH for (a) before and (b) after reconstruction Cu2O catalysts

Fig. S12. CV curves for T-Cu₂O/Cu before and after 2000 potential cycles in 0.1 M KHCO₃ solution saturated with CO_2 (sweep rate, 50mV/s, potential cycle window: -1.4 and 0 V vs. RHE)

Fig. S13. PXRD patterns of the Cu₂O catalysts after CV- Recycled.

Fig. S14. IR spectroscopy of the Cu_2O catalysts after CV- Recycled

Fig. S15. The experimental set up for the in situ Raman spectroscopy measurement.

Catalyst	substrate	Electrolyte	FE _(C2H4)	E vs. RHE	Ref.
	glassy	0.1 M	39%	-0.95 V	1
cu deposited off cu ₃ N	carbon	KHCO ₃			1
Cu papocubes (11 pm)	glassy	0.1 M	/1 10/	-1.1 V	2
cu hanocubes (44 hin)	carbon	KHCO ₃	41.170		Z
Fragmentation Cu ₂ O NPs	glassy	0.1 M	57.3%	-1.1 V	2
	carbon	KHCO ₃			5
Deren dened conner	glassy	0.1 M KCl 52	F 20/	-1.1 V	4
Boron-doped copper	carbon		52%		4
F-modified Cu	GDL	0.75 М КОН	65%	–0.89 V	5
Cu O desired Cu NDs	Cu disc	0.1 M	32.1%	-1.0 V	C
Cu ₂ O-derived Cu NPS		KHCO ₃			6
Dealloyed Cu–Al	C-GDL	1 M KOH	80%	–1.5 V	7
	glassy	0.1 M	47 69/	-1.1 V	0
Cu _{4.16} CeO _x	carbon	KHCO ₃	47.6%		8
Hierarchical CuO microboxes	carbon paper	0.1 M K ₂ SO ₄	51.3%	-1.05 V	9
T-Cu-O	glassy	0.1 M	58.0%	-1.1 V	This
1 Cu2O	carbon	KHCO ₃			work

Table S3. Catalytic performances of Cu-based catalysts

Fig. S15. DFT models of (a and d) $F-Cu_2O/Cu(100)$, (b and e) $O-Cu_2O/Cu(111)$ and $T-Cu_2O/Cu(111)/(100)$ interfaces with different view angles.

Reference

- Z. Liang, T. Zhuang, A. Seifitokaldani, J. Li, C. Huang, C. Tan, Y. Li, P. De Luna, C. T. Dinh, Y. Hu, Q. Xiao, P. Hsieh, Y. Wang, F. Li, R. Quintero-Bermudez, Y. Zhou, P. Chen, Y. Pang, S. Lo, L. J. Chen, H. Tan, Z. Xu, S. Zhao, D. Sinton, E. Sargent, Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO₂, *Nat. Commun.*, 2018, **9**, 3828.
- 2 A. Loiudice, P. Lobaccaro, E. A. Kamali, T. Thao, B.H. Huang, J. W. Ager, R. Buonsanti, Tailoring copper nanocrystals towards C₂ products in electrochemical CO₂ reduction, *Angew. Chem. Int. Ed.*, 2016, **55**, 5789–5792.

- 3 H. Jung, S.Y. Lee, C.W. Lee, M.K. Cho, D.H. Won, C. Kim, H. S. Oh, B. K. Min, Y. J. Hwang, Electrochemical fragmentation of Cu₂O nanoparticles enhancing selective C-C coupling from CO₂ reduction reaction, *J. Am. Chem. Soc.*, 2019, **141**, 4624–4633.
- Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen, E. Sargent, Dopant-induced electron localization drives CO₂ reduction to C₂ hydrocarbons, *Nat. Chem.*, 2018, **10**, 974-980.
- 5 W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Electrocatalytic reduction of CO₂ to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper, *Nat. Catal.*, 2020, **3**, 478.
- 6 C. S. Chen, J. H. Wan, B. S. Yeo, Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu₂O-derived copper catalyst and palladium (II) chloride, *J. Phys. Chem. C*, 2015, **119**, 26875–26882.
- M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C. T. Dinh, P. De Luna, Z. Yu, A. S. Rasouli, P. Brodersen, S. Sun,
 O. Voznyy, C. S. Tan, M. Askerka, F. Che, M. Liu, A. Seifitokaldani, Y. Pang, S.C. Lo, A. Ip, Z. Ulissi, E. H. Sargent, Accelerated discovery of CO₂ electrocatalysts using active machine learning. *Nature*, 2020, 581, 178.
- 8 D. Wu, C. Dong, D. Wu, J. Fu, H. Liu, S. Hu, Z. Jiang, S. Qiao, X. Du, Cuprous ions embedded in ceria lattice for selective and stable electrochemical reduction of carbon dioxide to ethylene, *J. Mater. Chem. A*, 2018, **6**, 9373-9377.
- 9 D. Tan, J. Zhang, L. Yao, X. Tan, X. Cheng, Q. Wan, B. Han, L. Zheng, J. Zhang, Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene, *Nano Res.*, 2020, **13**, 768–774.