Supporting Information

From Crystalline to Amorphous: Heterostructure Design of MoO_2/MoS_2

In-situ Supported by Nitrogen-doped Carbon with Robust Sodium

Storage at -40 °C

Shaocong Tang^a, Jiabao Li^{a*}, Ziqian Li^a, Jingjing Hao^a, Tianyi Wang^a, Likun Pan^{b*},

Chengyin Wang^a*

^aSchool of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-

Ting Road, Yangzhou, Jiangsu 225002, China

^bShanghai key laboratory of Magnetic Resonance, School of Physics and Electronic

Science, East China Normal University, Shanghai 200241, China

Corresponding Authors: jiabaoli@yzu.edu.cn (Jiabao Li); lkpan@phy.ecnu.edu.cn (Likun Pan); wangcy@yzu.edu.cn (Chengyin Wang)

Material Characterizations

The structure and morphology of as-fabricated samples were investigated through the field-emission scanning electron microscope (FESEM, Hitachi-4800) and transmission electron microscopy (TEM, Tecnai G2 F30). The amorphous structure was confirmed by the X-ray powder diffraction (XRD, Bruker-D8 ADVANCE). Raman spectra were collected on RM-1000 (Renishaw In Via), and the surface chemical component was characterized through the X-ray photoelectron spectrometry (XPS, Thermo ESCALAB 250 XI). The amounts of carbon and nitrogen in the final products were evaluated by using elementary CHN combustion analysis. The content of sulfur in the materials was measured through ICP–OES (Spectro Arcos).

Electrochemical Measurements

The working electrode containing as-fabricated active materials (a-MoO₂/MoS₂@NC or c-MoO₂/MoS₂@NC), conductive agent (acetylene black), as well as the binder (carboxymethyl cellulose) was added to the deionized water with a mass ratio of 8:1:1, and then grounded to form a uniform slurry, which was further coated on a copper foil and dried at 100 °C for 24 h. For the cells assembled in an argon-filled glovebox (oxygen and water contents less than 0.1 ppm), sodium foil was used as the counter and reference electrode, and Whatman glass fiber was employed as the separator, and the electrolyte is 1.0 M NaClO4 dissolved in ethylene carbonate and propylene carbonate (weight ratio 1:1) add with 5.0 wt.% fluoroethylene carbonate. The galvanostatic discharging/discharging tests were conducted on a Neware BTS-4000 battery test system in a voltage range of 0.05-3.0 V at various current densities. Galvanostatic intermittent titration technique (GITT) measurements were carried out at a current density of 50 mA g⁻¹ in the intermittent charge mode with a rest period of 2 h. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of the electrodes were implemented on a CHI660E (Chenhua, China) electrochemical workstation.

Fig. S1 XRD pattern of the a- MoO_2/NC .

Fig. S2 FESEM images of the c-MoO_2/MoS_2@NC (a and b) with different

magnifications.

Fig. S3 TEM (a and b), HRTEM (c) images, SAED pattern (d), and elemental mapping

(e) of c-MoO₂/MoS₂@NC.

Fig. S4 CV curves (a) at 0.2 mV s⁻¹ ranging from 0.05 to 3.0 V and

discharging/charging profiles (b) of c-MoO₂/MoS₂@NC.

Fig. S5 Comparison of the Coulombic efficiencies of cycling at 0.1 A g⁻¹ between a-

MoO₂/MoS₂@NC and c-MoO₂/MoS₂@NC.

Fig. S6 Comparison of the Coulombic efficiencies of rate capabilities between a-

MoO₂/MoS₂@NC and c-MoO₂/MoS₂@NC.

Fig. S7 Rate profiles of a-MoO₂/MoS₂@NC.

Fig. S8 Coulombic efficiencies of a-MoO $_2$ /MoS $_2$ @NC and c-MoO $_2$ /MoS $_2$ @NC at 1.0 A

g⁻¹.

Fig. S9 Coulombic efficiencies of a-MoO₂/MoS₂@NC and c-MoO₂/MoS₂@NC at 1.0 A

g-1.

Fig. S10 Galvanostatic intermittent titration versus time curve (a), and ionic diffusion coefficients upon discharging and charging (b) for the c-MoO₂/MoS₂@NC electrode.

Fig. S11 Nyquist plots for the electrolyte employed at different temperatures (a). The ionic conductivities of electrolyte at various temperatures (b). The digital photos of the electrolyte at various temperatures (c).

Generally, the ionic conductivity of electrolyte can be estimated using a bipolar plate device, which contains two stainless steel plates and a separator soaked with electrolyte. Through the EIS measurements at various temperatures, the ionic conductivity at different temperatures can be determined based on the following formula:

$$\sigma = \frac{h}{R \times S}$$

where σ is the ionic conductivity, h is the distance between tow plates, R is the resistance of electrolyte, and S is the surface area of the plate.

Fig. S12 The comparison of initial discharge/charge profiles of target a-

MoO2/MoS2@NC at 25, 0, -20 and -40 °C.

Fig. S13 Galvanostatic intermittent titration versus time curve of the a-

 $MoO_2/MoS_2@NC$ electrode at 0 °C.

Fig. S14 Galvanostatic intermittent titration versus time curve of the a-

Fig. S15 Galvanostatic intermittent titration versus time curve of the a-

MoO₂/MoS₂@NC electrode at -40 °C.

Fig. S16 The SEM and TEM characterizations of a-MoO₂/MoS₂/NC after 100 cycles at

0.1 A g⁻¹ at 25 (a and b), 0 (c and d), -20 (e and f) and -40 (g and h) $^{\circ}$ C.

Table S1 Element analysis report of a-MoO₂@MoS₂@NC and the calculation

equations for the mass	fractions of	$f MoS_2$ and	I MoO ₂ components,	respectively.
------------------------	--------------	---------------	--------------------------------	---------------

a-MoO ₂ /MoS ₂ @NC	N ^[a]	C ^[a]	H ^[a]	S ^[b]
Content	3.46	15 36	0.48	16 32
(wt.%)	5.40	15.50	0.48	10.52

^[a] Estimated by CHN analysis. ^[b] Obtained from ICP-OES measurement.

W wt.%(MoS₂) = (W wt.%(S)*M(MoS2))/2M(S)=45.82 wt.%

W wt.%(MoO₂) =1-W wt.%(N) – W wt.%(C) – W wt.%(H) – W wt.%(MoS₂) = 34.88

wt.%

Table S2 The comparison of sodium storage performance of as-prepared a-

Samples	Voltage range	Cycling	Rate capability	Ref.
	(V)	performance		-
			284.8 mAh g ⁻¹ at	
			0.05 A g ⁻¹	
			256.7 mAh g ⁻¹ at	
			0.1 A g ⁻¹	
MoO ₂	0.01.2.0	222.6 m∆h g ⁻¹	226.2 mAh g ⁻¹ at	
		223.0 IIIAII g	0.2 A g ⁻¹	1
fibor	0.01-5.0	after 100 cycles $2 \pm 0.1 \text{ A} \text{ g}^{-1}$	197.2 mAh g ⁻¹ at	
liber		at 0.1 A g	0.5 A g ⁻¹	
			169.6 mAh g ⁻¹ at	
			1.0 A g ⁻¹	
			137.5 mAh g ⁻¹ at	
			2.0 A g ⁻¹	
			About 287.0 mAh	
			g ⁻¹ at 0.05 A g ⁻¹	
			\sim 276.2 mAh g ⁻¹ at	
		210 mAh g ⁻¹ after	0.1 A g ⁻¹	
			About 262.5 mAh	
			g ⁻¹ at 0.2 A g ⁻¹	
			About 237.6 mAh	
			g ⁻¹ at 0.5 A g ⁻¹	
			About 225.5 mAh	
			g ⁻¹ at 1.0 A g ⁻¹	
			About 201.2 mAh	
TiO ₂ @MoO ₂ -Carbon			g ⁻¹ at 2.0 A g ⁻¹	2
matrix	0.01-3.0	500 cycles at 1.0	About 175.3 mAh	2
		Ag⁻¹	g ⁻¹ at 3.0 A g ⁻¹	
			About 158.9 mAh	
			g ⁻¹ at 5.0 A g ⁻¹	
			About 125.2 mAh	
			g ⁻¹ at 8.0 A g ⁻¹	
			About 110.0 mAh	
			g ⁻¹ at 10.0 A g ⁻¹	
			About 95.2 mAh g	
			¹ at 15.0 A g ⁻¹	
			About 76.0 mAh g	
			¹ at 20.0 A g ⁻¹	

 $MoO_2/MoS_2@NC$ with other related materials at room temperature.

MoO₂/C nanosheets	0.01-3	306.0 mAh g ⁻¹ after 50cycles at 0.1 A g ⁻¹	331.0 mAh g ⁻¹ at 0. 2 A g ⁻¹ 224.0 mAh g ⁻¹ at 0.5 A g ⁻¹ 164.1 mAh g ⁻¹ at 1.0 A g ⁻¹ 105.0 mAh g ⁻¹ at 2.0 A g ⁻¹ 52.5 mAh g ⁻¹ at 5.0 A g ⁻¹	3
MoO ₂ /3D porous carbon	0.01-3	About 367.0 mAh g ⁻¹ after 200 cycles at 0.1 A g ⁻¹	About 380.2 mAh g^{-1} at 0.1 A g^{-1} About 356.3 mAh g^{-1} at 0.2 A g^{-1} About 289.3 mAh g^{-1} at 0.5 A g^{-1} About 238.6 mAh g^{-1} at 1.0 A g^{-1} About 211.1 mAh g^{-1} at 2.0 A g^{-1}	4
MoS ₂ /graphite composite	0.01-3	About 254.0 mAh g ⁻¹ after 800 cycles at 0.1 A g ⁻¹	267.8 mAh g^{-1} at 0.05 A g^{-1} 250.9 mAh g^{-1} at 0.1 A g^{-1} 264.4 mAh g^{-1} at 0.2 A g^{-1} 231.9 mAh g^{-1} at 0.5 A g^{-1} 225.4 mAh g^{-1} at 1.0 A g^{-1}	5
Mo-defect-rich ultrathin MoS ₂	0.01-3	384.3 mAh g ⁻¹ after 100 cycles at 0.1 A g ⁻¹	412.0 mAh g^{-1} at 0.1 A g^{-1} 381.0 mAh g^{-1} at 0.2 A g^{-1} 317.0 mAh g^{-1} at 0.5 A g^{-1} 291.0 mAh g^{-1} at 1.0 A g^{-1} 266.0 mAh g^{-1} at 2.0 A g^{-1} 226.0 mAh g^{-1} at 5.0 A g^{-1}	6

$Cu_2S@carbon@MoS_2 0.01-3 $
$\begin{array}{c} 410.0 \text{ mAh g}^{-1} \text{ at} \\ 0.1 \text{ Ag}^{-1} \\ 386.0 \text{ mAh g}^{-1} \text{ at} \\ 0.2 \text{ Ag}^{-1} \\ 368.0 \text{ mAh g}^{-1} \text{ at} \\ 0.2 \text{ Ag}^{-1} \\ 368.0 \text{ mAh g}^{-1} \text{ at} \\ 0.3 \text{ Ag}^{-1} \\ 359.0 \text{ mAh g}^{-1} \text{ at} \\ 0.5 \text{ Ag}^{-1} \\ 337.0 \text{ mAh g}^{-1} \text{ at} \\ 1.0 \text{ Ag}^{-1} \\ 316.0 \text{ mAh g}^{-1} \text{ at} \end{array}$
$Cu_2S@carbon@MoS_2 0.01-3 $
$\begin{array}{c} 297.0 \text{ mAh g}^{-1} \\ 297.0 \text{ mAh g}^{-1} \\ 368.0 \text{ mAh g}^{-1} \text{ at} \\ 368.0 \text{ mAh g}^{-1} \text{ at} \\ 368.0 \text{ mAh g}^{-1} \text{ at} \\ 359.0 \text{ mAh g}^{-1} \\ 359.0 \text{ mAh g}^{-1} \text{ at} \\ 359.0 \text{ mAh g}^{-1} \text{ at} \\ 37.0 \text{ mAh g}^{-1} \text{ at} \\ 1.0 \text{ A g}^{-1} \\ 316.0 \text{ mAh g}^{-1} \text{ at} \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$Cu_2S@carbon@MoS_2$ 0.01-3 after 200 cycles $0.3 A g^{-1}$ $0.3 A g^{-1}$ $at 3.0 A g^{-1}$ $359.0 mAh g^{-1} at$ $0.5 A g^{-1}$ $337.0 mAh g^{-1} at$ $1.0 A g^{-1}$ $316.0 mAh g^{-1} at$ $10 A g^{-1}$
at 3.0 Ag^{-1} 359.0 mAh g^{-1} at 0.5 Ag^{-1} 337.0 mAh g^{-1} at 1.0 Ag^{-1} 316.0 mAh g^{-1} at
0.5 A g ⁻¹ 337.0 mAh g ⁻¹ at 1.0 A g ⁻¹ 316.0 mAh g ⁻¹ at
337.0 mAh g ⁻¹ at 1.0 A g ⁻¹ 316.0 mAh g ⁻¹ at
1.0 A g ⁻¹ 316.0 mAh g ⁻¹ at
316.0 mAh g ⁻¹ at
Situal gat
2 በ A σ ⁻¹
241.0 mAh g ⁻¹ at
0 5Δ σ ⁻¹
$0.5 \mathrm{g}$
$0.8 \Delta \sigma^{-1}$
$313.0 \text{ mAh } \text{g}^{-1}$
$\frac{10000}{1000} = \frac{10000}{1000} = 10$
at 0.05 Ag^{-1} 190.0 mAb. g^{-1} at
1 5 A σ^{-1}
175.0 mAh g ⁻¹ at
2.0 A g ⁻¹
392.6 mAh g ⁻¹ at
0.05 A g ⁻¹
285.4 mAh g ⁻¹ at
0.1 A g ⁻¹
$250.9 \text{ mAh } \text{g}^{-1}$ 245.6 mAh g^{-1} at 245.6 mAh g^{-1} at
composite 0.01-3 after 100 cycles 99 0.2 A g ⁻¹
$at 0.1 \text{ A g}^{-1}$ 207.2 mAh g $^{-1}$ at
0.5 A g ⁻¹
162.7 mAh g ⁻¹ at
1.0 A g ⁻¹
288.0 mAh g ⁻¹ at
0.2 A g ⁻¹
268.0 mAh g ⁻¹ at
330.0 mAn g ⁻¹ 0.3 A g ⁻¹
0.01-3 after 100 cycles 241.0 mAh g ⁻¹ at
at U.1 A g ⁻¹ 0.5 A g ⁻¹
225.0 mAh g ⁻¹ at
1.0 A g ⁻¹

			496.8 mAh g ⁻¹ at	
			0.1 A g ⁻¹	
			463.5 mAh g ⁻¹ at	
			0.2 A g ⁻¹	
			425.2 mAh g ⁻¹ at	
		2625 mAb m^1	0.5 A g ⁻¹	
Map @Map (reduced	0.01.2	362.5 mAn g ⁺	408.6 mAh g ⁻¹ at	11
MOU ₂ @MOS ₂ /reduced	0.01-3	after 300 cycles	1.0 A g ⁻¹	
graphene oxide		at 1.0 A g -	390.6 mAh g ⁻¹ at	
			2.0 A g ⁻¹	
			361.2 mAh g ⁻¹ at	
			5.0 A g ⁻¹	
			334.7 mAh g ⁻¹ at	
			10.0 A g ⁻¹	
	0.01-3	435.2 mAh g ⁻¹	About 422.2 mAh	
			g ⁻¹ at 0.2 A g ⁻¹	
			About 401.3 mAh	
MoQ_@MoS_/nitrogen			g ⁻¹ at 0.5 A g ⁻¹	
dened carbon			About 395.3 mAh	12
		at $0.2 \wedge \sigma^{-1}$	g ⁻¹ at 1.0 A g ⁻¹	
nanorous			About 358.6 mAh	
			g ⁻¹ at 3.0 A g ⁻¹	
			About 330.1 mAh	
			g ⁻¹ at 5.0 A g ⁻¹	
			410.1 mAh g ⁻¹ at	
			0.1 A g ⁻¹	
			345.2 mAh g ⁻¹ at	
a-		406.8 mΔh σ ⁻¹	1.0 A g ⁻¹	
u MoQ_/MoS_@nitrogen	0.05-3	after 100 cycles	201.6 mAh g ⁻¹ at	This work
-doned carbon	0.05 5	at $0.1 \Delta \sigma^{-1}$	5.0 A g ⁻¹	
			114.7 mAh g ⁻¹ at	
			10.0 A g ⁻¹	
			41.5 mAh g ⁻¹ at	
			20.0 A g ⁻¹	

Table S3 The comparison of initial discharge/charge capacities and initial Coulombic

Operating temperature (°C)	Initial discharge capacity (mAh g ⁻¹)	Initial charge capacity (mAh g ⁻¹)	Initial Coulombic efficiency (%)
25	803.8	432.5	53.8
0	538.8	287.8	53.4
-20	474.7	245.9	51.8
-40	425.2	207.7	48.8

efficiency of a-MoO₂@MoS₂@NC at various temperatures.

Table S4 The comparison of sodium storage performance between the as-prepared

Sampler Voltage range (V)		Cycling performance at	Rate capability at low
Samples	voltage range (v)	low temperature	temperature
			101.7 mAh g ⁻¹ at 0.5 A g ⁻¹
		98.5 mAh g ⁻¹ after 200	97.5 mAh g ⁻¹ at 2.0 A g ⁻¹
$\operatorname{Nall}_2(\operatorname{PO}_4)_3/\mathbb{C}$	1 5 2 0	cycles at 0.5 A g ⁻¹ at 0 $^\circ \! \mathbb{C}$	95.0 mAh g ⁻¹ at 4.0A g ⁻¹
13	1.5-5.0	94.3 mAh g ⁻¹ after 200	88.2 mAh g ⁻¹ at 6.0 A g ⁻¹
10		cycles at 0.5 A g $^{\text{-1}}$ at -25 $^{\circ}\!\mathrm{C}$	81.3 mAh g ⁻¹ at 8.0 A g ⁻¹
			at 0 °C
a-KTiO _x /Ti ₂ CT _x ¹⁴	0.005-3.0	$144.2 \text{ mAb } a^{-1}$ after 100	152.1 mAh g ⁻¹ at 0.1 A g ⁻¹
		144.2 mAin g after 100	110.8 mAh g ⁻¹ at 0.5 A g ⁻¹
		Cycles at 0.1 A g $^{-1}$ at 0 C	70.1 mAh g ⁻¹ at 2.0A g ⁻¹
		112.0 mAn g^2 after 100	56.8 mAh g ⁻¹ at 4.0 A g ⁻¹
		cycles at 0.1 A g $^{-1}$ at -25 \odot	at 0 °C
			145.0 mAh g ⁻¹ at 0.1 A g ⁻¹
Two-		136.0 mAh g ⁻¹ after 50	133.3 mAh g ⁻¹ at 0.2 A g ⁻¹
dimensional		cycles at 0.3 A g-1 at 0 $^\circ \! \mathbb{C}$	122.5 mAh g ⁻¹ at 0.5 A g ⁻¹
NbSSe	0.05-3.0	About 72.6 mAh g ⁻¹ after	112.4 mAh g ⁻¹ at 1.0 A g ⁻¹
nanoplates		50 cycles at 0.3 A g ⁻¹ at -	103.8 mAh g ⁻¹ at 2.0A g ⁻¹
15		25 ℃	85 mAh g ⁻¹ at 3.0A g ⁻¹
			at 0 °C

a-MoO₂/MoS₂@NC and the other reported materials at low temperatures.

NiO nanosheet@n itrogen- doped carbon 16	0.005-3.0	/	About 58.1 mAh g^{-1} at 0.05 A g^{-1} About 42.2 mAh g^{-1} at 0.1 A g^{-1} 1 About 37.1 mAh g^{-1} at 0.2 A g^{-1} 1 About 34.1 mAh g^{-1} at 0.4 A g^{-1} 1 About 33.2 mAh g^{-1} at 0.8 A g^{-1} 1 About 313 mAh g^{-1} at 1.0 A g^{-1} 1 About 30.1 mAh g^{-1} at 2.0 A g^{-1} 1 About 30.0 mAh g^{-1} at 4.0 A g^{-1} 1
NaTi ₂ (PO ₄) ₃ /c		117.9 mAh g ⁻¹ at 0.5 A g ⁻¹	_at-25 C
arbon-carbon nanotubes 17	1.5-3.0	at 0℃ 17.1 mAh g ⁻¹ at 0.5 A g ⁻¹ at -10℃	/
TiO ₂ - B/anatase dual-phase nanowire 18	0.01-3.0	About 10 mAh g ⁻¹ after 100 cycles at 1.0 A g ⁻¹ at 0℃	About 161.1 mAh g^{-1} at 0.25 A g^{-1} About 152.2 mAh g^{-1} at 0.5 A g^{-1} About 147.1 mAh g^{-1} at 1.0 A g^{-1} About 138.1 mAh g^{-1} at 2.0 A g^{-1} About 131.2 mAh g^{-1} at 5.0 A g^{-1} About 127.3 mAh g^{-1} at 10.0 A g^{-1} About 127.1 mAh g^{-1} at 20.0 A g^{-1} at 0°C
Fe _{1-x} S nanosheet@n itrogen- doped carbon ¹⁹	0.01-3.0	/	467.1 mAh g ⁻¹ at 0.1 A g ⁻¹ 369.3 mAh g ⁻¹ at 0.5 A g ⁻¹ 300.5 mAh g ⁻¹ at 1.0 A g ⁻¹ 223.4 mAh g ⁻¹ at 2.0 A g ⁻¹ 193.8 mAh g ⁻¹ at 2.5A g ⁻¹ 159.9 mAh g ⁻¹ at 3.0A g ⁻¹ at -20 °C

Nano NaTi ₂ (PO ₄) ₃ @ Carbon ²⁰	1.5-3.0	100.05 mAh g ⁻¹ after 200 cycles at 0.2 A g ⁻¹ at -20 °C	109.0 mAh g ⁻¹ at 1.0 A g ⁻¹ 99.0 mAh g ⁻¹ at 2.0 A g ⁻¹ 92.0 mAh g ⁻¹ at 5.0 A g ⁻¹ 72.0 mAh g ⁻¹ at 10.0 A g ⁻¹ at -20 °C
			298.3 mAh g ⁻¹ at 0.1 A g ⁻¹
a-		302.5 mAh g ⁻¹ after 100	216.5 mAh g ⁻¹ at 0.5 A g ⁻¹
MoO2/MoS2	0.005.2.0	cycles at 0.1 A g ⁻¹ at -0 °C	145.7 mAh g ⁻¹ at 1.0 A g ⁻¹
@NC	0.005-5.0	151.7 mAh g ⁻¹ after 100	82.6 mAh g ⁻¹ at 2.0 A g ⁻¹
This work		cycles at 0.1 A g ⁻¹ at -40 °C	43.5 mAh g ⁻¹ at 4.0 A g ⁻¹
			at 0 °C

Reference

- H. Zhang, Z. Han, X. Li, F. Kong, S. Tao and B. Qian, MoO₂ nanosheets embedded into carbon nanofibers with a self-standing structure for lithium ion and sodium ion batteries, *Ceram. Int.*, 2021, **47**, 26839-26846.
- C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li, X. Han, Z. Liu, J. Yang, W. Xiao, J. Liang, X. Sun and J. Qiu, Ultrafine MoO₂-Carbon Microstructures Enable Ultralong-Life Power-Type Sodium Ion Storage by Enhanced Pseudocapacitance, *Adv. Energy Mater.*, 2017, 7, 1602880.
- J. Jiang, W. Yang, H. Wang, Y. Zhao, J. Guo, J. Zhao, M. Beidaghi and L. Gao, Electrochemical Performances of MoO₂/C Nanocomposite for Sodium Ion Storage: An Insight into Rate Dependent Charge/Discharge Mechanism, *Electrochim. Acta*, 2017, **240**, 379-387.
- S. Bao, S.-h. Luo, S.-x. Yan, Z.-y. Wang, Q. Wang, J. Feng, Y.-I. Wang and T.-f. Yi, Nano-sized MoO₂ spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage, *Electrochim. Acta*, 2019, **307**, 293-301.
- Q. Yang, M. Liu, Y. Hu, Y. Xu, L. Kong and L. Kang, Facile synthesis of MoS₂/graphite intercalated composite with enhanced electrochemical performance for sodium ion battery, *J. Energy Chem.*, 2018, 27, 1208-1213.
- Y. Li, R. Zhang, W. Zhou, X. Wu, H. Zhang and J. Zhang, Hierarchical MoS₂ Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage, *ACS Nano*, 2019, 13, 5533-5540.

- Y. Fang, D. Luan, Y. Chen, S. Gao, and X. W. Lou, Rationally Designed Three-Layered Cu₂S@Carbon@MoS₂ Hierarchical Nanoboxes for Efficient Sodium Storage, *Angew. Chem. Int. Ed.*, 2020, **59**, 7178-7183.
- X. Geng, Y. Jiao, Y. Han, A. Mukhopadhyay, L. Yang and H. Zhu, Freestanding Metallic 1T MoS₂ with Dual Ion Diffusion Paths as High Rate Anode for Sodium-Ion Batteries, *Adv. Funct. Mater.*, 2017, 27, 1702998.
- Y. Wu, P. Nie, J. Jiang, B. Ding, H. Dou and X. Zhang, MoS₂-Nanosheet-Decorated 2D Titanium Carbide (MXene) as High-Performance Anodes for Sodium-Ion Batteries, *ChemElectroChem*, 2017, 4, 1560-1565.
- Y. Zhang, H. Tao, T. Li, S. Du, J. Li, Y. Zhang and X. Yang, Vertically Oxygen-Incorporated MoS₂ Nanosheets Coated on Carbon Fibers for Sodium-Ion Batteries, ACS Appl. Mater. Interface, 2018, 10, 35206-35215.
- Y. Luo, X. Ding, X. Ma, D. Liu, H. Fu and X. Xiong, Constructing MoO₂@MoS₂ Heterostructures anchored on graphene nanosheets as a high-performance anode for sodium ion batteries, *Electrochim. Acta*, 2021, **388**, 138612.
- W. Yang, L. Han, X. Liu, L. Hong and M. Wei, Template-free fabrication of 1D core-shell MoO₂@MoS₂/nitrogen-doped carbon nanorods for enhanced lithium/sodium-ion storage, *J. Colloid Interface Sci.*, 2021, **588**, 804-812.
- 13. J. Li, Z. Li, S. Tang, T. Wang, K. Wang, L. Pan and C. Wang, Sodium titanium phosphate nanocube decorated on tablet-like carbon for robust sodium storage performance at low temperature, *J. Colloid Interface Sci.*, 2023, **629**, 121-132.
- 14. J. Li, S. Tang, Z. Li, Z. Ding, T. Wang and C. Wang, Cross-linked amorphous potassium titanate Nanobelts/Titanium carbide MXene nanoarchitectonics for efficient sodium storage at low temperature, *J. Colloid Interface Sci.*, 2023, **629**, 461-472.
- 15. L.-F. Zhou, X.-W. Gao, T. Du, H. Gong, L.-Y. Liu and W.-B. Luo, Two-Dimensional NbSSe as anode material for low-temperature sodium-ion batteries, *Chem. Eng. J.*, 2022, **435**, 134838.
- 16. Z. Bai, X. Lv, D. H. Liu, D. Dai, J. Gu, L. Yang and Z. Chen, Two-Dimensional NiO@C-N Nanosheets Composite as a Superior Low-Temperature Anode Material for Advanced

S20

Lithium-/Sodium-Ion Batteries, ChemElectroChem, 2020, 7, 3616-3622.

- L. Wang, B. Wang, G. Liu, T. Liu, T. Gao and D. Wang, Carbon nanotube decorated NaTi₂(PO₄)₃/C nanocomposite for a high-rate and low-temperature sodium-ion battery ande, *RSC Adv.*, 2016, 6, 70277-70283.
- D. Lin, K. Li, Q. Wang, L. Lyu, B. Li and L. Zhou, Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO₂ nanowires, *J. Mater. Chem. A*, 2019, **7**, 19297-19304.
- H. Fan, B. Qin, Z. Wang, H. Li, J. Guo, X. Wu and J. Zhang, Pseudocapacitive sodium storage of Fe_{1-x}S@N-doped carbon for low-temperature operation, *Sci. China Mater.*, 2019, 63, 505-515.
- X. Zhang, M. Zeng, Y. She, X. Lin, D. Yang, Y. Qin and X. Rui, Enhanced low-temperature sodium storage kinetics in a NaTi₂(PO₄)₃@C nanocomposite, *J. Power Sources*, 2020, **477**, 228735.