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Material Characterizations  

The structure and morphology of as-fabricated samples were investigated 

through the field-emission scanning electron microscope (FESEM, Hitachi-4800) and 

transmission electron microscopy (TEM, Tecnai G2 F30). The amorphous structure was 

confirmed by the X-ray powder diffraction (XRD, Bruker-D8 ADVANCE). Raman spectra 

were collected on RM-1000 (Renishaw In Via), and the surface chemical component 

was characterized through the X-ray photoelectron spectrometry (XPS, Thermo 

ESCALAB 250 XI). The amounts of carbon and nitrogen in the final products were 

evaluated by using elementary CHN combustion analysis. The content of sulfur in the

materials was measured through ICP–OES (Spectro Arcos).

Electrochemical Measurements

The working electrode containing as-fabricated active materials (a-

MoO2/MoS2@NC or c-MoO2/MoS2@NC), conductive agent (acetylene black), as well 

as the binder (carboxymethyl cellulose) was added to the deionized water with a mass 

ratio of 8:1:1, and then grounded to form a uniform slurry, which was further coated 

on a copper foil and dried at 100 °C for 24 h. For the cells assembled in an argon-filled 

glovebox (oxygen and water contents less than 0.1 ppm), sodium foil was used as the 

counter and reference electrode, and Whatman glass fiber was employed as the 

separator, and the electrolyte is 1.0 M NaClO4 dissolved in ethylene carbonate and 

propylene carbonate (weight ratio 1:1) add with 5.0 wt.% fluoroethylene carbonate. 

The galvanostatic discharging/discharging tests were conducted on a Neware BTS-

4000 battery test system in a voltage range of 0.05-3.0 V at various current densities. 
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Galvanostatic intermittent titration technique (GITT) measurements were carried out 

at a current density of 50 mA g-1 in the intermittent charge mode with a rest period of 

2 h. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of the 

electrodes were implemented on a CHI660E (Chenhua, China) electrochemical 

workstation.
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Fig. S1 XRD pattern of the a-MoO2/NC.

Fig. S2 FESEM images of the c-MoO2/MoS2@NC (a and b) with different 

magnifications.
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Fig. S3 TEM (a and b), HRTEM (c) images, SAED pattern (d), and elemental mapping 

(e) of c-MoO2/MoS2@NC.

Fig. S4 CV curves (a) at 0.2 mV s-1 ranging from 0.05 to 3.0 V and 

discharging/charging profiles (b) of c-MoO2/MoS2@NC.
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Fig. S5 Comparison of the Coulombic efficiencies of cycling at 0.1 A g-1 between a-

MoO2/MoS2@NC and c-MoO2/MoS2@NC. 

Fig. S6 Comparison of the Coulombic efficiencies of rate capabilities between a-

MoO2/MoS2@NC and c-MoO2/MoS2@NC. 
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Fig. S7 Rate profiles of a-MoO2/MoS2@NC. 

Fig. S8 Coulombic efficiencies of a-MoO2/MoS2@NC and c-MoO2/MoS2@NC at 1.0 A 

g-1.
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Fig. S9 Coulombic efficiencies of a-MoO2/MoS2@NC and c-MoO2/MoS2@NC at 1.0 A 

g-1.

Fig. S10 Galvanostatic intermittent titration versus time curve (a), and ionic diffusion 

coefficients upon discharging and charging (b) for the c-MoO2/MoS2@NC electrode.
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Fig. S11 Nyquist plots for the electrolyte employed at different temperatures (a). The 

ionic conductivities of electrolyte at various temperatures (b). The digital photos of 

the electrolyte at various temperatures (c). 

Generally, the ionic conductivity of electrolyte can be estimated using a bipolar plate 

device, which contains two stainless steel plates and a separator soaked with 

electrolyte. Through the EIS measurements at various temperatures, the ionic 

conductivity at different temperatures can be determined based on the following    

formula: 

𝜎 =
ℎ

𝑅 × 𝑆

where is the ionic conductivity, h is the distance between tow plates, R is the 𝜎 

resistance of electrolyte, and S is the surface area of the plate.  
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Fig. S12 The comparison of initial discharge/charge profiles of target a-

MoO2/MoS2@NC at 25, 0, -20 and -40 °C. 

Fig. S13 Galvanostatic intermittent titration versus time curve of the a-

MoO2/MoS2@NC electrode at 0 °C.
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Fig. S14 Galvanostatic intermittent titration versus time curve of the a-

MoO2/MoS2@NC electrode at -20 °C.

Fig. S15 Galvanostatic intermittent titration versus time curve of the a-

MoO2/MoS2@NC electrode at -40 °C.
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Fig. S16 The SEM and TEM characterizations of a-MoO2/MoS2/NC after 100 cycles at 

0.1 A g-1 at 25 (a and b), 0 (c and d), -20 (e and f) and -40 (g and h) °C.  

Table S1 Element analysis report of a-MoO2@MoS2@NC and the calculation 

equations for the mass fractions of MoS2 and MoO2 components, respectively.

a-MoO2/MoS2@NC N[a] C[a] H[a] S[b]

Content

(wt.%)
3.46 15.36 0.48 16.32

[a] Estimated by CHN analysis. [b] Obtained from ICP-OES measurement.

W wt.%(MoS2) = (W wt.%(S)∗M(MoS2))/2M(S)=45.82 wt.%

 

W wt.%(MoO2) =1-W wt.%(N) – W wt.%(C) – W wt.%(H) – W wt.%(MoS2) = 34.88 

wt.%
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Table S2 The comparison of sodium storage performance of as-prepared a-

MoO2/MoS2@NC with other related materials at room temperature.

Samples
Voltage range 

(V)
Cycling 

performance
Rate capability Ref.

MoO2 

nanosheets@carbon 
fiber

0.01-3.0
223.6 mAh g-1 
after 100 cycles 
at 0.1 A g-1

284.8 mAh g-1 at 
0.05 A g-1

256.7 mAh g-1 at 
0.1 A g-1

226.2 mAh g-1 at 
0.2 A g-1

197.2 mAh g-1 at 
0.5 A g-1

169.6 mAh g-1 at 
1.0 A g-1

137.5 mAh g-1 at 
2.0 A g-1

1

TiO2@MoO2-Carbon 
matrix

0.01-3.0
210 mAh g-1 after 
500 cycles at 1.0 
A g-1

About 287.0 mAh 
g-1 at 0.05 A g-1

～276.2 mAh g-1 at 
0.1 A g-1

About 262.5 mAh 
g-1 at 0.2 A g-1

About 237.6 mAh 
g-1 at 0.5 A g-1

About 225.5 mAh 
g-1 at 1.0 A g-1

About 201.2 mAh 
g-1 at 2.0 A g-1

About 175.3 mAh 
g-1 at 3.0 A g-1

About 158.9 mAh 
g-1 at 5.0 A g-1

About 125.2 mAh 
g-1 at 8.0 A g-1

About 110.0 mAh 
g-1 at 10.0 A g-1

About 95.2 mAh g-

1 at 15.0 A g-1

About 76.0 mAh g-

1 at 20.0 A g-1

2
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MoO2/C nanosheets 0.01-3
306.0 mAh g-1 
after 50cycles at 
0.1 A g-1

331.0 mAh g-1 at 0. 
2 A g-1

224.0 mAh g-1 at 
0.5 A g-1

164.1 mAh g-1 at 
1.0 A g-1

105.0 mAh g-1 at 
2.0 A g-1

52.5 mAh g-1 at 5.0 
A g-1

3

MoO2/3D porous 
carbon

0.01-3
About 367.0 mAh 
g-1 after 200 
cycles at 0.1 A g-1

About 380.2 mAh 
g-1 at 0.1 A g-1

About 356.3 mAh 
g-1 at 0.2 A g-1

About 289.3 mAh 
g-1 at 0.5 A g-1

About 238.6 mAh 
g-1at 1.0 A g-1

About 211.1 mAh 
g-1 at 2.0 A g-1

4

MoS2/graphite 
composite

0.01-3
About 254.0 mAh 
g-1 after 800 
cycles at 0.1 A g-1

267.8 mAh g-1 at 
0.05 A g-1

250.9 mAh g-1 at 
0.1 A g-1

264.4 mAh g-1 at 
0.2 A g-1

231.9 mAh g-1 at 
0.5 A g-1

225.4 mAh g-1 at 
1.0 A g-1

5

Mo-defect-rich 
ultrathin MoS2

0.01-3
384.3 mAh g-1 
after 100 cycles 
at 0.1 A g-1

412.0 mAh g-1 at 
0.1 A g-1

381.0 mAh g-1 at 
0.2 A g-1

317.0 mAh g-1 at 
0.5 A g-1

291.0 mAh g-1 at 
1.0 A g-1

266.0 mAh g-1 at 
2.0 A g-1

226.0 mAh g-1at 
5.0 A g-1

6
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Cu2S@carbon@MoS2 0.01-3
297.0 mAh g-1 
after 200 cycles 
at 3.0 A g-1

430.0 mAh g-1 at 
0.05 A g-1

410.0 mAh g-1 at 
0.1 A g-1

386.0 mAh g-1 at 
0.2 A g-1

368.0 mAh g-1 at 
0.3 A g-1

359.0 mAh g-1 at 
0.5 A g-1

337.0 mAh g-1 at 
1.0 A g-1

316.0 mAh g-1 at 
2.0 A g-1

7

1T MoS2-graphene-
MoS2

0.01-3
313.0 mAh g-1 
after 200 cycles 
at 0.05 A g-1

241.0 mAh g-1 at 
0.5A g-1

222.0 mAh g-1 at 
0.8 A g-1

208.0 mAh g-1 at 
1.0 A g-1

190.0 mAh g-1 at 
1.5 A g-1

175.0 mAh g-1 at 
2.0 A g-1

8

MoS2/Ti3C2Tx 
composite

0.01-3
250.9 mAh g-1 
after 100 cycles 
at 0.1 A g-1

392.6 mAh g-1 at 
0.05 A g-1

285.4 mAh g-1 at 
0.1 A g-1

245.6 mAh g-1 at 
0.2 A g-1

207.2 mAh g-1 at 
0.5 A g-1

162.7 mAh g-1 at 
1.0 A g-1

99

oxygen-incorporated 
MoS2/carbon fiber

0.01-3
330.0 mAh g-1 
after 100 cycles 
at 0.1 A g-1

288.0 mAh g-1 at 
0.2 A g-1

268.0 mAh g-1 at 
0.3 A g-1

241.0 mAh g-1 at 
0.5 A g-1

225.0 mAh g-1 at 
1.0 A g-1

10
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MoO2@MoS2/reduced 

graphene oxide
0.01-3

362.5 mAh g-1 
after 300 cycles 
at 1.0 A g-1

496.8 mAh g-1 at 
0.1 A g-1

463.5 mAh g-1 at 
0.2 A g-1

425.2 mAh g-1 at 
0.5 A g-1

408.6 mAh g-1 at 
1.0 A g-1

390.6 mAh g-1 at 
2.0 A g-1

361.2 mAh g-1 at 
5.0 A g-1

334.7 mAh g-1 at 
10.0 A g-1

11

MoO2@MoS2/nitrogen
-doped carbon 

nanorods
0.01-3

435.2 mAh g-1 
after 100 cycles 
at 0.2 A g-1

About 422.2 mAh 
g-1 at 0.2 A g-1

About 401.3 mAh 
g-1 at 0.5 A g-1

About 395.3 mAh 
g-1 at 1.0 A g-1

About 358.6 mAh 
g-1at 3.0 A g-1

About 330.1 mAh 
g-1 at 5.0 A g-1

12

a-
MoO2/MoS2@nitrogen

-doped carbon
0.05-3

406.8 mAh g-1 
after 100 cycles 
at 0.1 A g-1

410.1 mAh g-1 at 
0.1 A g-1

345.2 mAh g-1 at 
1.0 A g-1

201.6 mAh g-1 at 
5.0 A g-1

114.7 mAh g-1 at 
10.0 A g-1

41.5 mAh g-1 at 
20.0 A g-1

This work
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Table S3 The comparison of initial discharge/charge capacities and initial Coulombic 

efficiency of a-MoO2@MoS2@NC at various temperatures. 

Operating 
temperature (°C)

Initial discharge 
capacity (mAh g-1)

Initial charge 
capacity (mAh g-1)

Initial Coulombic 
efficiency (%)

25 803.8 432.5 53.8

0 538.8 287.8 53.4

-20 474.7 245.9 51.8

-40 425.2 207.7 48.8

Table S4 The comparison of sodium storage performance between the as-prepared 

a-MoO2/MoS2@NC and the other reported materials at low temperatures. 

Samples Voltage range (V)
Cycling performance at 

low temperature
Rate capability at low 

temperature

NaTi2(PO4)3/C
arbon

13

1.5-3.0

98.5 mAh g-1 after 200 

cycles at 0.5 A g-1 at 0℃
94.3 mAh g-1 after 200 

cycles at 0.5 A g-1 at -25℃

101.7 mAh g-1 at 0.5 A g-1

97.5 mAh g-1 at 2.0 A g-1

95.0 mAh g-1 at 4.0A g-1

88.2 mAh g-1 at 6.0 A g-1 
81.3 mAh g-1 at 8.0 A g-1 
at 0 °C

a-KTiOx/Ti2CTx
14

0.005-3.0

144.2 mAh g-1 after 100 

cycles at 0.1 A g-1 at 0℃
112.6 mAh g-1 after 100 

cycles at 0.1 A g-1 at -25℃

152.1 mAh g-1 at 0.1 A g-1

110.8 mAh g-1 at 0.5 A g-1

70.1 mAh g-1 at 2.0A g-1

56.8 mAh g-1 at 4.0 A g-1 
at 0 °C

Two-
dimensional 

NbSSe 
nanoplates

15

0.05-3.0

136.0 mAh g-1 after 50 

cycles at 0.3 A g-1 at 0℃
About 72.6 mAh g-1 after 
50 cycles at 0.3 A g-1 at -

25℃

145.0 mAh g-1 at 0.1 A g-1

133.3 mAh g-1 at 0.2 A g-1

122.5 mAh g-1 at 0.5 A g-1

112.4 mAh g-1 at 1.0 A g-1 
103.8 mAh g-1 at 2.0A g-1

85 mAh g-1 at 3.0A g-1

at 0 °C
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NiO 
nanosheet@n

itrogen-
doped carbon

16

0.005-3.0 /

About 58.1 mAh g-1 at 0.05 A 
g-1

About 42.2 mAh g-1 at 0.1 A g-

1

About 37.1 mAh g-1 at 0.2 A g-

1

About 34.1 mAh g-1 at 0.4 A g-

1

About 33.2 mAh g-1 at 0.8 A g-

1

About 313 mAh g-1 at 1.0 A g-1 

About 30.1 mAh g-1 at 2.0 A g-

1 
About 30.0 mAh g-1 at 4.0 A g-

1

at -25℃
NaTi2(PO4)3/c
arbon-carbon 

nanotubes
17

1.5-3.0

117.9 mAh g-1 at 0.5 A g-1 

at 0℃
17.1 mAh g-1 at 0.5 A g-1 at 

-10℃

/

TiO2-
B/anatase 
dual-phase 
nanowire

18

0.01-3.0
About 10 mAh g-1 after 
100 cycles at 1.0 A g-1 at 

0℃

About 161.1 mAh g-1 at 0.25 A 
g-1

About 152.2 mAh g-1 at 0.5 A 
g-1

About 147.1 mAh g-1 at 1.0 A 
g-1

About 138.1 mAh g-1 at 2.0 A 
g-1

About 131.2 mAh g-1 at 5.0 A 
g-1

About 127.3 mAh g-1 at 10.0 A 
g-1 
About 127.1 mAh g-1 at 20.0 A 
g-1 

at 0℃

Fe1−xS 
nanosheet@n

itrogen-
doped carbon

19

0.01-3.0 /

467.1 mAh g-1 at 0.1 A g-1

369.3 mAh g-1 at 0.5 A g-1

300.5 mAh g-1 at 1.0 A g-1

223.4 mAh g-1 at 2.0 A g-1 
193.8 mAh g-1 at 2.5A g-1

159.9 mAh g-1 at 3.0A g-1

at -20 °C
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Nano 
NaTi2(PO4)3@

Carbon
20

1.5-3.0
100.05 mAh g-1 after 200 
cycles at 0.2 A g-1 at -20 °C

109.0 mAh g-1 at 1.0 A g-1

99.0 mAh g-1 at 2.0 A g-1

92.0 mAh g-1 at 5.0 A g-1

72.0 mAh g-1 at 10.0 A g-1 
at -20 °C

a-
MoO2/MoS2

@NC
This work

0.005-3.0

302.5 mAh g-1 after 100 
cycles at 0.1 A g-1 at -0 °C
151.7 mAh g-1 after 100 
cycles at 0.1 A g-1 at -40 °C

298.3 mAh g-1 at 0.1 A g-1

216.5 mAh g-1 at 0.5 A g-1

145.7 mAh g-1 at 1.0 A g-1

82.6 mAh g-1 at 2.0 A g-1 
43.5 mAh g-1 at 4.0 A g-1 
at 0 °C
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