Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supplementary Information (ESI) for

Phosphate functionalized CoS nanoparticles coupled with Fe₂O₃ nanocrystals decorated on N, S co-doped porous carbon spheres for advanced hybrid supercapacitors

Zhenyuan Ji,^{a,*} Guanxiang Tang,^a Dongwei Ma,^a Lizhi Chen,^a

Guoxing Zhu,^a Jun Zhu^b and Xiaoping Shen^{a,*}

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang

212013, People's Republic of China

^b Faculty of Transportion Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China

* Corresponding author.

E-mail address: jizhenyuan@ujs.edu.cn (Zhenyuan Ji), shenxp@ujs.edu.cn (Xiaoping Shen)

Fig. S1 SEM images of (a, b) NSC/CoS-1 and (c, d) NSC/CoS-3 composites.

Fig. S2 The width distributions of (a) NSC/CoS-1, (b) NSC/CoS-2, (c) NSC/CoS-3, and (d) P-NSC/CoS-2.

Fig. S3 (a) The nitrogen adsorption/desorption isotherms of P-NSC/CoS-2 and NSC/Fe_2O_3-2 .

Fig. S4 XPS survey spectrum of the NSC/Fe₂O₃-2 composite.

Fig. S5 TEM images of (a) NSC/Fe₂O₃-1 and (b) NSC/Fe₂O₃-3 composites.

Fig. S6 The width distributions of (a) NSC/Fe₂O₃-1, (b) NSC/Fe₂O₃-2, and (c) NSC/Fe₂O₃-3.

Fig. S7 GCD profiles of NSC/CoS-2 at 1-20 A g^{-1} .

Fig. S8 Nyquist plots of the electrodes.

Fig. S9 (a) Co 2p and (b) S 2p of P-NSC/CoS-2 before and after the electrochemical tests; (c) Fe 2p and (d) O 1s of NSC/Fe₂O₃-2 before and after the electrochemical tests.

Supercapacitor devices	Energy	Power		
	density	density	Cyclic stability	Ref.
	$(Wh kg^{-1})$	(W kg ⁻¹)		
CoP-CoNC/CC//AC	39.2	1962	86.5%, 5 A g ⁻¹	1
	30	9800	5000 cycles	
NiCoP@CoS/NF//AC	35.8	748.9	91.4%, 10 A g ⁻¹	2
	28.5	7489.1	5000 cycles	
Zn-Co-O@CoS//NOPC	56.8	771.6	86.4%, 5 A g ⁻¹	3
	22.2	7985.7	5000 cycles	
C, N-Co _x S _y /CNF//AC	37.29	813.6	90.5%, 10 A g ⁻¹	4
	29	9546	5000 cycles	
MnO _{2-x} @CoS//NOPC	34.72	597.24	89.6%, 4 A g ⁻¹	5
	12.73	5950	9000 cycles	
CoS@CC//RGO	38	533		6
	24	5333	5000 cycles	
Fe-Co-S/NF//RGO	43.6	770	89.6%, 5 A g ⁻¹	7
	13.3	5510	5000 cycles	
FG-CoS//FG-CoS	35.2	250	117%, 200 mV s ⁻¹	8
	16.82	1250	1000 cycles	
Co-Zn-S@CuO-CF//Fe-S/GO-NF	25.71	404	80%, 1.05 A g ⁻¹	9
	8	8730	4500 cycles	
Co ₃ O ₄ /NiO/rGO//Fe ₂ O ₃ /RGO	37.83	750	86.9%, 1 A g ⁻¹	10
	—		6000 cycles	
P-NSC/CoS-2//NSC/Fe ₂ O ₃ -2	64.3	873.6	94.2%, 5 A g ⁻¹	This
	33.3	16216.2	10000 cycles	work

Table S1 A comparison of the P-NSC/CoS-2//NSC/Fe $_2O_3$ -2 hybrid supercapacitorwith those of advanced supercapacitors recently reported.

References

- 1 V. Elayappan, P. A. Shinde, G. K. Veerasubramani, S. C. Jun, H. S. Noh, K. Kim, M. Kim, H. Lee, Metal-organic-framework-derived hierarchical Co/CoP-decorated nanoporous carbon polyhedra for robust high-energy storage hybrid supercapacitors, *Dalton Trans.*, 2020, **49**, 1157-1166.
- 2 Z. Y. Xu, C. C. Du, H. K. Yang, J. L. Huang, X. H. Zhang and J. H. Chen, NiCoP@CoS tree-like core-shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors, *Chem. Eng. J.*, 2020, **421**, 127871.
- 3 Y. He, L. Xie, S. X. Ding, Y. J. Long, X. Y. Zhou, Q. Hu and D. M. Lin, Coreshell nanostructured Zn-Co-O@CoS arrays for high-performance hybrid supercapacitors, *Dalton Trans.*, 2021, 50, 4923-4931.
- 4 W. J. Liu, Y. Zhao, J. H. Zheng, D. Y. Jin, Y. Q. Wang, J. B. Lian, S. L. Yang, G. C. Li, Y. F. Bu and F. Qiao, Heterogeneous cobalt polysulfide leaf-like array/carbon nanofiber composites derived from zeolite imidazole framework for advanced asymmetric supercapacitors, *J. Colloid Interface Sci.*, 2022, **606**, 728-735.
- 5 Q. Hu, M. G. Tang, M. He, N. Jiang, C. G. Xu, D. M. Lin and Q. J. Zheng, Core-shell MnO₂@CoS nanosheets with oxygen vacancies for highperformance supercapattery, *J. Power Sources*, 2019, 446, 227335.
- 6 S. Surendran, S. Shanmugapriya, H. Ramasamy, G. Janani, D. Kalpanad, Y. S. Lee, U. Sim and R. K. Selvan, Hydrothermal deposition of CoS nanostructures and its multifunctional applications in supercapattery and water electrolyzer, *Appl. Surf. Sci.*, 2019, **494**, 916-928.
- 7 K. Le, M. J. Gao, W. Liu, J. R. Liu, Z. Wang, F. L. Wang, V. Murugadoss, S. D. Wu, T. Ding and Z. H. Guo, MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors, *Electrochim. Acta*, 2019, **323**, 134826.

- 8 D. M. El-Gendy, I. M. Afifi and N. K. Allam, Eco-friendly, one-step synthesis of cobalt sulfide-decorated functionalized graphene for high-performance supercapacitors, *J. Energy Storage*, 2019, 24, 100760.
- 9 M. Shahi, F. Hekmat and S. Shahrokhian, Hybrid supercapacitors constructed from double-shelled cobalt-zinc sulfide/copper oxide nanoarrays and ferrous sulfide/graphene oxide nanostructures, J. Colloid Interface Sci., 2021, 585, 750-763.
- 10 M. A. Nassar, S. I. El-dek, W. M. A. El Rouby and A. G. El-Deen, Highly efficient asymmetric supercapacitor-based on Ni-Co oxides intercalated graphene as positive and Fe₂O₃ doped graphene as negative electrodes, *J. Energy Storage*, 2021, **44**, 103305.