Enhancement the properties of ZnAl-LDH for photocatalytic

nitrogen reduction reaction by controlling anion intercalation

Senda Su, Xiaoman Li,* Mengyao Tan, Xu Zhang, Yingying Wang, Yanzhong Duan,, Juan Peng and Min Luo*

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, *Corresponding author: luominjy@nxu.edu.cn, lixm2017@nxu.edu.cn

Total number of pages: 19 Total number of figures: 16 Total number of tables: 1

Table of Contents

- 1. Fig. S1: The XRD pattern and FT-IR spectra of $PMo_{12-X}V_X$ (X = 0, 1, 2, 3, 8).
- 2. Fig. S2: The N_2 adsorption–desorption isotherms and BET surface area of ZnAl-LDHs.
- 3. Fig. S3: The FT-IR spectra of the ZnAl-LDHs at 400-4000 cm⁻¹ (a and b), PMo_{12-X} V_X @ZnAl-LDH (X = 0, 1, 2, 3, 8) at 400-1800 cm⁻¹(c).
- 4. Fig. S4: The NH_4^+ detection of standard spectra (a) and fitting curve (b) by ion chromatography.
- Fig. S5: The NH₄⁺ detection of UV-vis absorption spectra (a) and fitting curve (b).
- 6. Fig. S6: The gas phase products rate of the ZnAl-LDHs.
- 7. Fig. S7: ¹H NMR spectra of the solution obtained after reaction using ${}^{15}N_2$ as the feeding gas on PMo₉V₃@ZnAl-LDH.
- 8. Fig. S8: The N_2H_4 detection of UV-vis absorption spectra (a) and fitting curve (b).
- 9. Fig. S9: The NH_4^+ production rate of the PMoV in air.
- 10. Fig. S10: The XRD pattern and FT-IR spectra of PMo₉V₃@ZnAl-LDH before and after cycle reaction.
- 11. Fig. S11: The C 1s XPS spectrum.
- 12. Fig. S12: The UV-vis diffuse reflectance spectra and Tauc plots of $PMo_{12-X}V_X@ZnAl-LDH$ (X = 0, 1, 2, 3, 8).
- 13. Fig. S13: The contact angle images of $PMo_{12-X}V_X@ZnAl-LDH$ (X = 1 (a), 2 (b), 3 (c), 8 (d)).
- 14. Fig. S14: The EIS pattern (a) and photocurrent pattern (b)of $PMo_{12-X}V_X@ZnAl-LDH$ (X = 3, 8).
- 15. Fig. S15: The Mott-Schottky curves of ZnAl-LDHs.
- 16. Fig. S16: The VB XPS spectrum of PMo_9V_3 .
- 17. Table S1: Photocatalytic nitrogen fixation performance of LDH-based materials.

Figure S1. The XRD pattern (a) and FT-IR spectra (b) of $PMo_{12-X}V_X$ (X = 0, 1, 2, 3,

^{8).}

Figure S2. The N_2 adsorption-desorption isotherms and BET surface area of ZnAl-LDHs.

Figure S3. The FT-IR spectra of the ZnAl-LDHs at 400-4000 cm⁻¹ (a and b), PMo_{12-X} V_X @ZnAl-LDH (X = 0, 1, 2, 3, 8) at 400-1800 cm⁻¹(c).

Figure S4. The NH_4^+ detection of standard spectra (a) and fitting curve (b) by ion

chromatography.

Figure S5. The NH_4^+ detection of UV-vis absorption spectra (a) and fitting curve (b).

Figure S6. The gas phase products rate of the ZnAl-LDHs.

Figure S7. ¹H NMR spectra of the solution obtained after reaction using $^{15}N_2$ as the

feeding gas on $PMo_9V_3@ZnAl-LDH$.

Figure S8. The N_2H_4 detection of UV-vis absorption spectra (a) and fitting curve (b).

Figure S9. The NH_4^+ production rate of the PMoV in air.

Figure S10. The XRD pattern (a) and FT-IR spectra (b) of PMo₉V₃@ZnAl-LDH before and after cycle reaction.

Figure S11. The C 1s XPS spectrum.

Figure S12. The UV-vis diffuse reflectance spectra (a) and Tauc plots (b) of $PMo_{12-X}V_X@ZnAl-LDH$ (X = 0, 1, 2, 3, 8).

Figure S13. The contact angle images of $PMo_{12-X}V_X@ZnAl-LDH (X = 1 (a), 2 (b), 3 (c), 8 (d)).$

Figure S14. The EIS pattern (a) and photocurrent pattern (b) of $PMo_{12-X}V_X@ZnAl-LDH$ (X = 3, 8).

Figure S15. The Mott-Schottky curves of ZnAl-LDHs.

Figure S16. The VB XPS spectrum of PMo_9V_3 .

Catalyst	Light source	Detection method	organic scavenger s	NH ₃ evolution rate/μmol h ⁻¹ g ⁻¹ cat	Reference
NiV-LDH-11-AMO	Full spectrum	IC ^a	None	176	[1]
0.5%-CuZnAl-LDH	Full spectrum	IC ^a	None	110	[2]
ZnAl-LDH-NS	Full spectrum	NR ^b	None	15.28	[3]
ZnAl-LDH- 1h(alkaline etching)	Full spectrum	IC ^a	None	25.76	[4]
Sub@ZnAl-LDH	Full spectrum	IC ^a	None	48.91	This work
PM09V3@ ZnAl- LDH	Full spectrum	IC ^a	None	89.16	This work

 Table S1. Photocatalytic nitrogen fixation performance of LDH-based materials.

^a The detection method of ion chromatography.

^b The detection method of Nessler's reagent.

[1] X. Liu, Y. Li, J. Zhang, J. Lu, Ultrathin Ni/V-layered double hydroxide nanosheets for efficient visible-light-driven photocatalytic nitrogen reduction to ammonia, Nano Research 14(10) (2021) 3372-3378.

[2] S. Zhang, Y. Zhao, R. Shi, C. Zhou, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Efficient Photocatalytic Nitrogen Fixation over Cu-delta(+)-Modified Defective ZnAl-Layered Double Hydroxide Nanosheets, Advanced Energy Materials 10(8) (2020).

[3] Y. Zhao, Y. Zhao, G.I.N. Waterhouse, L. Zheng, X. Cao, F. Teng, L.-Z. Wu, C.-H. Tung, D. O'Hare, T. Zhang, Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation, Advanced Materials 29(42) (2017).

[4] Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, X. Cao, G.I.N. Waterhouse, T. Zhang, Alkali Etching of Layered Double Hydroxide Nanosheets for Enhanced Photocatalytic N₂ Reduction to NH₃, Advanced Energy Materials 10(34) (2020).