Enhancement the properties of ZnAl-LDH for photocatalytic nitrogen reduction reaction by controlling anion intercalation

Senda Su, Xiaoman Li,* Mengyao Tan, Xu Zhang, Yingying Wang, Yanzhong Duan,, Juan Peng and Min Luo*

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021,
*Corresponding author: luominjy@nxu.edu.cn, lixm2017@nxu.edu.cn

Total number of pages: 19
Total number of figures: 16
Total number of tables: 1
Table of Contents

1. Fig. S1: The XRD pattern and FT-IR spectra of PMo$_{12-X}V_X$ (X = 0, 1, 2, 3, 8).
2. Fig. S2: The N$_2$ adsorption–desorption isotherms and BET surface area of ZnAl-LDHs.
3. Fig. S3: The FT-IR spectra of the ZnAl-LDHs at 400-4000 cm$^{-1}$ (a and b), PMo$_{12-X}V_X$@ZnAl-LDH (X = 0, 1, 2, 3, 8) at 400-1800 cm$^{-1}$ (c).
4. Fig. S4: The NH$_4^+$ detection of standard spectra (a) and fitting curve (b) by ion chromatography.
5. Fig. S5: The NH$_4^+$ detection of UV-vis absorption spectra (a) and fitting curve (b).
6. Fig. S6: The gas phase products rate of the ZnAl-LDHs.
7. Fig. S7: 1H NMR spectra of the solution obtained after reaction using 15N$_2$ as the feeding gas on PMo$_9V_3$@ZnAl-LDH.
8. Fig. S8: The N$_2$H$_4$ detection of UV-vis absorption spectra (a) and fitting curve (b).
9. Fig. S9: The NH$_4^+$ production rate of the PMoV in air.
10. Fig. S10: The XRD pattern and FT-IR spectra of PMo$_9V_3$@ZnAl-LDH before and after cycle reaction.
11. Fig. S11: The C 1s XPS spectrum.
12. Fig. S12: The UV-vis diffuse reflectance spectra and Tauc plots of PMo$_{12-X}V_X$@ZnAl-LDH (X = 0, 1, 2, 3, 8).
13. Fig. S13: The contact angle images of PMo$_{12-X}V_X$@ZnAl-LDH (X = 1 (a), 2 (b), 3 (c), 8 (d)).
14. Fig. S14: The EIS pattern (a) and photocurrent pattern (b) of PMo$_{12-X}V_X$@ZnAl-LDH (X = 3, 8).
15. Fig. S15: The Mott-Schottky curves of ZnAl-LDHs.
16. Fig. S16: The VB XPS spectrum of PMo$_9V_3$.
17. Table S1: Photocatalytic nitrogen fixation performance of LDH-based materials.
Figure S1. The XRD pattern (a) and FT-IR spectra (b) of PMo$_{12-X}$V$_X$ ($X = 0, 1, 2, 3, 8$).
Figure S2. The N\textsubscript{2} adsorption–desorption isotherms and BET surface area of ZnAl-LDHs.
Figure S3. The FT-IR spectra of the ZnAl-LDHs at 400-4000 cm$^{-1}$ (a and b), PMo$_{12}$-χV_{χ}@ZnAl-LDH (X = 0, 1, 2, 3, 8) at 400-1800 cm$^{-1}$ (c).
Figure S4. The NH$_4^+$ detection of standard spectra (a) and fitting curve (b) by ion chromatography.
Figure S5. The NH$_4^+$ detection of UV-vis absorption spectra (a) and fitting curve (b).
Figure S6. The gas phase products rate of the ZnAl-LDHs.
Figure S7. 1H NMR spectra of the solution obtained after reaction using 15N$_2$ as the feeding gas on PMo$_9$V$_3$@ZnAl-LDH.
Figure S8. The N$_2$H$_4$ detection of UV-vis absorption spectra (a) and fitting curve (b).
Figure S9. The NH$_4^+$ production rate of the PMoV in air.
Figure S10. The XRD pattern (a) and FT-IR spectra (b) of \(\text{PMo}_9\text{V}_3\)@\(\text{ZnAl-LDH} \) before and after cycle reaction.
Figure S11. The C 1s XPS spectrum.
Figure S12. The UV-vis diffuse reflectance spectra (a) and Tauc plots (b) of PMo$_{12-x}V_x$@ZnAl-LDH ($X = 0, 1, 2, 3, 8$).
Figure S13. The contact angle images of PMo$_{12-2V_X}$@ZnAl-LDH (X = 1 (a), 2 (b), 3 (c), 8 (d)).
Figure S14. The EIS pattern (a) and photocurrent pattern (b) of PMo\textsubscript{12-X}V\textsubscript{X}@ZnAl-LDH (X = 3, 8).
Figure S15. The Mott-Schottky curves of ZnAl-LDHs.
Figure S16. The VB XPS spectrum of PMo$_9$V$_3$.

$$\varphi = 4.2 \text{ eV}$$

$$E_{\text{VB}} = 2.06 + 4.2 = 6.26 \text{ V vs. } E_{\text{vac}}$$

$$= 6.26 - 4.5 = 1.76 \text{ V vs. NHE}$$
Table S1. Photocatalytic nitrogen fixation performance of LDH-based materials.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Light source</th>
<th>Detection method</th>
<th>organic scavenger</th>
<th>(\text{NH}_3) evolution rate/(\mu \text{mol h}^{-1} \text{g}^{-1} \text{cat})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiV-LDH-11-AMO</td>
<td>Full spectrum</td>
<td>IC (^a)</td>
<td>None</td>
<td>176</td>
<td>[1]</td>
</tr>
<tr>
<td>0.5%-CuZnAl-LDH</td>
<td>Full spectrum</td>
<td>IC (^a)</td>
<td>None</td>
<td>110</td>
<td>[2]</td>
</tr>
<tr>
<td>ZnAl-LDH-NS</td>
<td>Full spectrum</td>
<td>NR (^b)</td>
<td>None</td>
<td>15.28</td>
<td>[3]</td>
</tr>
<tr>
<td>ZnAl-LDH-1h(alkaline etching)</td>
<td>Full spectrum</td>
<td>IC (^a)</td>
<td>None</td>
<td>25.76</td>
<td>[4]</td>
</tr>
<tr>
<td>Sub@ZnAl-LDH</td>
<td>Full spectrum</td>
<td>IC (^a)</td>
<td>None</td>
<td>48.91</td>
<td>This work</td>
</tr>
<tr>
<td>PMo(_9)V(_3)@ ZnAl-LDH</td>
<td>Full spectrum</td>
<td>IC (^a)</td>
<td>None</td>
<td>89.16</td>
<td>This work</td>
</tr>
</tbody>
</table>

\(^a\) The detection method of ion chromatography.

\(^b\) The detection method of Nessler’s reagent.

