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S1 Materials and reagent

The following chemicals were supplied by Sinopharm Chemical Reagent Co., Ltd. (China) 

including copper nitrate trihydrate (Cu(NO3)2·3H2O, ≥99.0%), iron nitrate nonahydrate 

(Fe(NO3)3·9H2O, ≥99.99%), sodium hydroxide (NaOH, 90%), nickel nitrate hexahydrate 

(Ni(NO3)2·6H2O, ≥ 98.0%), urea (H2NCONH2, AR), ethylene glycol ((CH2OH)2, AR), hydrochloric 

acid (HCl, AR), sodium bicarbonate (NaHCO3, ≥99.8%), ethanol (CH3CH2OH, ≥99.7%), 

triethanolamine (TEA, C6H15NO3, AR), tert-butanol (TBA, C4H10O, AR), p-benzoquinone (BQ, 

C6H4O2, ≥97.0%), furfuryl alcohol (FFA, C5H6O2, ≥97.0%).  Catalase (bovine liver BR, 2000-5000 

u·mg¯1) was obtained from Shanghai Yuanye Biotechnology Co., Ltd. Escherichia coli (E. coli) 

was obtained from Shanghai Benoy Biological. Tetracycline (TC, C22H24N2O8, ≥98.0%), 

chlortetracycline (CTC, C22H23ClN2O8, ≥95.0%), and oxytetracycline (OTC, C22H25ClN2O9, 

≥99.0%) were obtained from Solarbio (Beijing). All the reagents in the experiment were of 

analytical grade, without further purified. 

S2 Bacterial culture experiments

The bacteria strains were cultured in nutrient broth 10 g·L¯1 peptone, 5 g·L¯1 yeast extract, 10 

g·L¯1 NaCl, pH = 7.2, and then added to 500 μg·L¯1 TC solution after degradation under light 

irradiation or dark in an incubator, for overnight at 37±1 ℃. The prepared 30 mL bacteria were 

centrifuged and washed 3 times with 0.9% NaCl, and diluted into 30 mL with 0.9% NaCl. The 

bacterial concentration was then determined by the plate method. Before carrying out the 

bacterial culture experiment, the stains was cultured and washed according to the above 

method, and then diluted with 0.9% NaCl to the designed concentration, which is the stock 

bacteria solution. The stock bacteria solution was used within 3 hrs, and its concentration was 

measured as the initial bacterial concentration. The TC solutions after Fenton-like 

photocatalysis for 0 hr, 4 hrs, 12 hrs were added into the above system, and the bacterial 

concentrations in the different systems were tested using the same method as described 

above. The bacteria used in this experiment was E. coli..
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Table S1. Surface areas, total pore volumes, and average pore diameters data of the prepared materials 
obtained using BET method.  

Table S2. Reaction rate constants in different cycles of re-CuNiFe-MMOs nanocomposite as catalysts.

No. of cycles  re-CuNiFe-MMOs nanocomposite
reaction rate constants k (min-1)

1 1.65
2 1.53
3 1.44
4 1.37
5 1.31
6 1.22
7 1.14
8 1.06
9 1.00
10 0.93
11 0.83
12 0.70

The results of degradation data indicate that the reaction kinetics of antibiotic degradation 
satisfies the pseudo-first-order kinetic model, and therefore, the kinetic parameters were 
calculated according to the following equations:

= -k·[c]                                               
dt
dc

= −k·t                                            
0

t

C
Cln

where t is the reaction time, C0 is the initial antibiotic concentration, Ct is the antibiotic 
concentration at reaction time t, and k is the rate constant.

Materials BET surface area 
(m2·g-1)

Total Pore volume 
(cm3·g-1)

Average pore Diameter 
(nm)

re-CuNiFe-MMOs 126 0.32 24
re-CuFe-MMOs 47 0.0033 5.72
re-CuNi-MMOs 114 0.25 16
re-FeNi-MMOs 118 0.23 11
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Table S3. A List of Molecular Structure Formulas
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Table S4. Potential intermediates detected during TC degradation in re-CuNiFe-MMOs system under 
visible light irradiation.

Number m/z Molecular formula Molecular structural formula
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TC12 400 C21H21O7N
OH O O O

N

OHOH

O

Number m/z Molecular formula Molecular structural formula

TC13 318 C17H16O6N
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TC26 84 C4H4O2 O O

Fig. S1. CuNiFe-MMOs precursor characterization results: (A) SEM image, (B) EDS, (C) XRD pattern.

Fig. S2. N2 adsorption-desorption isotherms of the prepared catalysts.
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Fig. S3. UV-vis spectra of TC degradation catalyzed by re-CuNiFe-MMOs at different conditions: (A) blank 
experiment without catalyst; (B) visible light irradiation.

Fig. S4. Characterization results of re-CuNiFe-MMOs synthesized in different reduction time: (A) EDS, (B) 
XRD patterns, and (C) catalytic behavior of TC degradation. (re-CuNiFe-MMOs obtained at reduction time 

of 2 hrs gets the best performance for the Fenton-like photocatalytic degradation of TC).
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Fig. S5. Characterization results of re-CuNiFe-MMOs synthesized at different reduction temperatures: (A) 
EDS, (B) XRD patterns, and (C) catalytic behavior of TC degradation.

(re-CuNiFe-MMOs obtained at reduction temperature of 160 oC gains the top performance for the 
Fenton-like photocatalytic degradation of TC.)

Fig. S6. Characterization results of re-CuNiFe-MMOs synthesized in different concentrations of NaHCO3: 
(A) EDS, (B) XRD patterns, and (C) catalytic behavior of TC degradation.

(re-CuNiFe-MMOs obtained at 0.01 g·L¯1 NaHCO3 wins the best performance for the Fenton-like 
photocatalytic degradation of TC).
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Fig. S7. SEM (a) and EDS (b) of the prepared samples: (A) re-CuFe-MMOs, (B) re-CuNi-MMOs, and (C) re-
FeNi-MMOs.

Fig. S8. TC degradation results catalyzed by the prepared catalysts under visible-light irradiation: (A-C) UV-
vis spectra; (D) The corresponding pseudo-first-order kinetic model. The TC degradation rates using re-

CuNiFe-MMOs, re-CuFe-MMOs, re-CuNi-MMOs, and re-FeNi-MMOs are 99.9%(K=1.65 min¯1), 72.1% 
(K=0.44 min¯1), 60.6% (K=0.23 min¯1) and 46.5% (K=0.12 min¯1) within a 4 min period, respectively.
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Fig. S9. (A) Profiles of TC degradation catalyzed by re-CuNiFe-MMOs (red) and CuNiFe-MMOs (blue) under 
visble-light irradiation; (B) their corresponding pseudo-first-order kinetic models.

Fig. S10. TC degradation catalyzed by re-CuNiFe-MMOs in different pH under visible-light irradiation: (A-E) 
UV-vis spectra; (F) The corresponding pseudo-first-order kinetic models.



12

Fig. S11. Characterization results of re-CuNiFe-MMOs obtained by H2 reduction: (A) SEM, (B) EDS, (C) XRD.

Fig. S12. The linear plots of ln(Ct/C0) versus time of the 2nd, 4th, 6th, 8th, 10th, and 12th cycles in TC 
degradation cycling test catalyzed by re-CuNiFe-MMOs.
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Fig. S13. SEM (A), EDS (B), and XRD (C) pattern over re-CuNiFe-MMOs after TC degradation for twelve 
consecutive recycling experiments.

Fig. S14. TC degradation cycling test catalyzed by re-CuNiFe-MMOs.
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Fig. S15. (A) Profiles of TC (50mg·L¯1) degradation and (B) their corresponding pseudo-first-order kinetic 
model catalyzed by the prepared photocatalysts.

Fig. S16. UV-vis spectra of TCs at different degradation periods: (A) CTC, and (B) OTC by using re-CuNiFe-
MMOs catalyst under visible light irradiation.

Fig.S17. (A) Profiles of TC degradation with (B) corresponding pseudo-first-order kinetic models over the 
prepared antibiotics. (Operating parameters: 30 min adsorption equilibrium under anaerobic dark 

condition, 0.25 g·L¯1 catalyst, 10 mg·L¯1 antibiotics, 25 oC, pH 7.2).
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Fig. S18. LC-MS spectra of intermediates in TC degradation in re-CuNiFe-MMOs system.
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Fig. S19. XPS survey spectra of fresh and used re-CuNiFe-MMOs catalysts.

 

Fig. S20.  Active species capture experiments for the TC degradation catalyzed by re-CuNiFe-MMOs at 
conditions: (A) aerobic under visible light, (B) anaerobic under visible light.
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Fig. S21.  Active species capture experiments for the TC degradation catalyzed by re-CuNiFe-MMOs at 
conditions: (A) aerobic under dark, (B) anaerobic under dark.

As shown in Fig. S21A, the degradation rate of TC is reached by 95.0 % within 45 min 
under the dark aerobic conditions. TBA, FFA, TEA and BQ was added to respectively 
correspond quench the ·OH, 1O2, h+ and ·O2¯ generated during the catalytic reaction. The 
degradation rates decrease from 95.0% to 86.3%, 51.2%, 62.2% and 34.0%, respectively, 
indicating that ·O2¯ is the main active species of under dark aerobic conditions. Whereas, in 
the dark anaerobic, the degradation rate was greatly inhibited in 4.22%, much less than that 
under dark aerobic conditions (Fig. S21B). And the degradation rate decreases from 4.2% to 
2.0%, 3.8%, 3.2% and 1.5% after adding TBA, FFA, TEA and BQ, respectively. It confirmed that 
·O2¯ is the main active species to degrade TC under dark aerobic conditions.

Fig. S22. EPR patterns of defects for different samples: (a) re-CuNiFe-MMOs; (b) re-CuFe-MMOs; (c) re-
CuNi-MMOs; (d) re-FeNi-MMOs.
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Fig. S23. EPR spectra of (A) ·O2
−, (B) ·OH, and (C) 1O2 by using the prepared catalysts. ((a) re-CuNiFe-MMOs, 

(b) re-CuFe-MMOs, (c) re-CuNi-MMOs, (d) re-FeNi-MMOs). (Operating parameters: 0.25 g·L¯1 catalyst, 10 

mg·L¯1 TC, pH of 7.2)

Fig. S24. FT-IR spectra of the prepared samples: (a) re-CuNiFe-MMOs; (b) re-CuFe-MMOs; (c) re-CuNi-
MMOs; (d) re-FeNi-MMOs.


