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Experimental

Materials. All reactions were executed in a nitrogen-filled glovebox operating at <1 ppm of O, and
H,0. All starting materials and reagents were obtained from commercial sources and used without
further purification. Solvents for reactions and optical measurements were dried by the method of
Grubbs, passing through dual alumina columns on a commercial solvent purification system (SPS), and
stored over 3 A molecular sieves. The cyclometalating ligand, 1-phenylisoquinoline-4-carbonitrile
(pigCN), was synthesized according to literature procedure.! Cyclometalated iridium dimers
[Ir(CAN)2(u-Cl)]2 (CAN = 6-phenylphenanthridine (pphen) and piqgCN) were prepared by the method of
Nonoyama,? refluxing IrCls-nH,0 with 2-2.5 equiv. of the cyclometalating ligand in a 3:1 mixture of 2-
ethoxyethanol and water. Potassium salts of the acNac and NacNac ligands were prepared by the
general procedure as described previously by our lab.® Tetrabutylammonium hexafluorophosphate
(TBAPFg) was recrystallized from hot ethanol and ferrocene was sublimed at ambient pressure before
use in electrochemical experiments.

Physical Methods. *H and 3C{*H} NMR spectra (shown in Fig. S27-538) were recorded at room
temperature using a JEOL ECA-500 or ECA-600 NMR spectrometer. The electrospray ionization mass
spectrometry (ESI-MS) experiments were carried out by the mass spectrometry facility at the
University of Texas at Austin, using an Agilent 6530 Q-TOF mass spectrometer and operated in positive
ionization mode, with a spray voltage of 3.5 kV. UV-vis absorption spectra were recorded in THF
solutions in screw-capped quartz cuvettes using an Agilent Carey 8454 UV-vis spectrophotometer.
Time-resolved photoluminescence measurements to determine lifetimes were recorded on a Horiba
DeltaFlex Lifetime System, using 390 nm pulsed diode excitation. Long-pass filters were used to
exclude the excitation pulse, and neutral density filters were used to optimize the photon count rate.
Steady-state emission spectra were recorded using a Horiba FluoroMax-4 spectrofluorometer with
appropriate long-pass filters to exclude stray excitation light from detection. In order to exclude air,
samples for steady-state and time-resolved emission spectra were prepared in a nitrogen-filled
glovebox using anhydrous solvents. Samples for room-temperature emission were housed in 1 cm
quartz cuvettes with septum-sealed screw caps, and samples for low-temperature emission were
contained in a custom quartz EPR tube with high-vacuum valve and immersed in liquid nitrogen using
a finger dewar. Emission spectra were corrected for excitation power and detector response. Solution
qguantum yields were determined relative to a standard of tetraphenylporphyrin in toluene, which has
a reported fluorescence quantum yield (@) of 0.11.% Samples doped into PMMA films were fabricated
inside of a glovebox by dissolving 2 wt% of the emitter and PMMA in dichloromethane, drop-coating
the solution onto a quartz slide, and drying by evaporation. Thin film quantum yields were recorded
using a Spectralon-coated integrating sphere (Horiba). Cyclic voltammetry (CV) measurements were
performed with a CH Instruments 602E potentiostat interfaced with a nitrogen glovebox via wire
feedthroughs. Samples were dissolved in MeCN with 0.1 M TBAPF¢ as a supporting electrolyte. A 3
mm diameter glassy carbon working electrode, a platinum wire counter electrode, and a silver wire
pseudo-reference electrode were used. Potentials were referenced to an internal standard of
ferrocene.

X-ray Crystallography Details. Single crystals were grown by vapor diffusion of pentane vapor into a
concentrated tetrahydrofuran solution or hexane vapor into a concentrated dichloromethane
solution. Crystals were mounted on a Bruker Apex Il three-circle diffractometer using MoKa radiation
(A =0.71073 A). The data was collected at 123(2) K and was processed and refined within the APEXI
software. Structures were solved by intrinsic phasing methods in SHELXT and refined by standard
difference Fourier techniques in the program SHELXL.> Hydrogen atoms were placed in calculated
positions using the standard riding model and refined isotropically; all non-hydrogen atoms were
refined anisotropically. The structure of complex 1 included an n-hexane molecule residing on a special
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position; this solvate was refined at half occupancy, with distance restraints (SADI) used to restrain
1,2 and 1,3 distances in this molecule, and rigid bond restraints (SIMU and DELU) for the thermal
displacement parameters. Crystallographic details are summarized in Table S2.

Synthesis

Synthesis of Ir(pphen):(acNac) (1). In the glovebox, [Ir(pphen):(u-Cl)]2 (35 mg, 0.024 mmol) was
suspended in 2 mL of tetrahydrofuran (THF). A solution of acNacK (15 mg, 0.068 mmol, 2.8 equiv.) in
5 mL THF was added slowly to the stirred mixture. After stirring overnight at room temperature, the
resulting dark red solution was concentrated in vacuo. The dark residue was extracted with 5 mL of
toluene and filtered through Celite. The toluene was removed under vacuum, and the solid was
retrieved. Further purification was done by dissolving in THF and slowly adding pentane to precipitate
out the side product, which was filtered off. The final product was retrieved upon concentration. Yield:
25 mg (60%). *H NMR (600 MHz, CsDg) 6: 9.59 (d, J = 8.4 Hz, 1H, ArH), 9.17-9.22 (m, 1H, ArH), 9.00 (d,
J=7.8 Hz, 1H, ArH), 8.10-8.25 (m, 5H, ArH), 8.07 (d, J = 7.8 Hz, 1H, ArH), 7.90 (d, J = 8.4 Hz, 1H, ArH),
7.38 (t, J = 7.5 Hz, 1H, ArH), 7.31 (t, J = 7.8 Hz, 1H, ArH), 7.19-7.28 (m, 5H, ArH), 7.11-7.18 (m, 2H,
ArH), 6.88 (t, J = 7.5 Hz, 2H, ArH), 6.77-6.85 (m, 3H, ArH), 6.51 (q, J = 7.7 Hz, 2H, ArH), 6.33 (t, J = 7.5
Hz, 1H, ArH), 5.71 (t, J = 7.5 Hz, 1H, ArH), 525 (d, J = 7.8 Hz, 1H, ArH), 4.05 (s, 1H,
PhNC(CHs)CHC(O)CHs), 1.29 (s, 3H, CHs), 1.06 (s, 3H, CHs). 3*C{*H} NMR (151 MHz, C¢Ds) 5: 179.7, 174.2,
174.1, 165.3, 157.0, 155.2, 149.3, 148.8, 148.2, 145.5, 145.2, 137.8, 135.8, 133.9, 133.7, 131.6, 131.4,
130.8 130.7, 130.6, 129.7, 129.6, 129.3, 128.9, 127.5, 127.4, 127.2, 126.92, 126.86, 126.3, 125.9,
125.6,125.4,124.8, 124.6, 124.1,123.6, 123.5, 122.4,122.2,121.7,121.4,121.3,121.2, 119.2, 101.7,
26.0, 24.6. UV-vis (THF): A/nm (¢/M~cm™) 251 (24 x 10%), 285(sh) (1.5 x 10%), 373 (6.9 x 10), 472 (2.7
x 10%), 519(sh) (2.1 x 103%), 612 (8.7 x 10%). HRMS-ESI (m/z): [M+Na]* calcd for CaoHzslrNsO, 898.2378;
found, 898.2376.

Synthesis of Ir(pphen),(NacNac) (2). In the glovebox, [Ir(pphen),(u-Cl)]; (27 mg, 0.018 mmol) was
suspended in 2 mL of THF. A solution of NacNacK (19 mg, 0.066 mmol, 3.7 equiv.) in 6 mL THF was
added slowly to the stirred mixture. After stirring overnight at room temperature, the resulting brown
solution was concentrated in vacuo. The dark residue was extracted with 6 mL of toluene and filtered
through Celite. The toluene was removed under vacuum, and the solid was retrieved. Further
purification was done by dissolving in THF and slowly adding pentane to precipitate out the side
product, which was filtered off. The final product was retrieved upon concentration. Yield: 25 mg
(31%). *H NMR (500 MHz, CsDs) 6: 10.18 (d, J = 9.0 Hz, 2H, ArH), 8.32 (t, J = 9.3 Hz, 4H, ArH), 8.26 (d, J
=8.5Hz, 2H, ArH), 7.93 (t, /= 7.5 Hz, 2H, ArH), 7.53 (t, /= 7.5 Hz, 2H, ArH), 7.32 (t, J = 8.0 Hz, 4H, ArH),
7.05 (t, J = 7.5 Hz, 2H, ArH), 6.19-6.64 (m, 10H, ArH), 6.11 (t, J = 7.3 Hz, 4H, ArH), 5.76 (d, J = 7.5 Hz,
2H, ArH), 5.41 (s, 1H, PANC(CH3)CHC(CH3)NPh), 1.85 (s, 6H, CHs). *C{*H} NMR (151 MHz, C¢D¢) 6: 177.4,
158.5, 157.9, 153.0, 149.0, 145.4, 135.7, 133.9, 131.8, 131.4, 131.2, 130.6, 128.7, 128.6, 127.2, 126.7,
126.5, 125.4, 125.2, 124.0, 122.4, 122.2, 122.0, 119.6, 97.4, 25.3. UV-vis (THF): A/nm (g/Mtcm™?) 252
(3.3 x10%, 295 (1.7 x 10%), 373 (1.0 x 10%), 402(sh) (7.9 x 103), 471 (2.6 x 103), 523(sh) (1.6 x 10%), 613
(4.6 x 10%). HRMS-ESI (m/z): [M+H]* calcd for CssHailrN4, 951.3033; found, 951. 3023.

Synthesis of Ir(pphen),((Cy)acNac) (3). In the glovebox, [Ir(pphen),(u-Cl)]z (44 mg, 0.030 mmol) was
suspended in 3 mL of toluene. A solution of (Cy)acNacK (16 mg, 0.072 mmol, 2.4 equiv.) in 3 mL toluene
was added slowly to the stirred mixture. After stirring for two days at room temperature, the resulting
reddish-brown solution was filtered through Celite. The toluene was removed under vacuum, and the
solid was retrieved. Further purification was done by dissolving in THF and slowly adding pentane to
precipitate out the side product, which was filtered off. The final product was retrieved upon
concentration. Yield: 16 mg (30%). *H NMR (500 MHz, CsDs) 8: 9.75 (d, J = 9.0 Hz, 1H, ArH), 9.00-9.06
(m, 2H, ArH), 8.92 (d, J = 8.0 Hz, 1H, ArH), 8.27 (d, J = 8.5 Hz, 1H, ArH), 8.20 (t, J = 8.5 Hz, 2H, ArH), 8.14
(d, J=8.0 Hz, 1H, ArH), 8.07 (d, J = 8.0 Hz, 1H, ArH), 8.03 (d, /= 8.0 Hz, 1H, ArH), 7.51 (d, J = 8.0 Hz, 1H,
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ArH), 7.21-7.38 (m, 7H, ArH), 7.18 (t, J = 7.8 Hz, 1H, ArH), 6.91 (t, J = 7.3 Hz, 1H, ArH), 6.77-6.85 (m,
2H, ArH), 6.54 (t, J = 7.0 Hz, 1H, ArH), 6.50 (t, J = 7.0 Hz, 1H, ArH), 3.88 (s, 1H, CyNC(CH3)CHC(O)CHs),
3.41-3.50 (M, 1H, CyH), 1.97-2.05 (m, 1H, CyH), 1.51-1.84 (m, 1H, CyH), 1.44 (s, 3H, CHs), 1.38-1.43
(m, 1H, CyH), 1.23 (s, 3H, CHs), 1.01-1.14 (m, 2H, CyH), 0.67—0.85 (m, 2H, CyH), 0.45-0.58 (m, 1H,
CyH), 0.36-0.44 (m, 1H, CyH), —0.15— —0.024 (m, 1H, CyH). *C{*H} NMR (151 MHz, CeDs) &: 175.9,
175.2,174.4,165.5,157.8, 155.5, 149.5, 147.3, 146.6, 144.8, 138.2, 134.5, 134.0, 133.9, 132.7, 131.30,
131.27, 130.8, 130.05, 130.02, 129.6, 129.5, 129.0, 127.3, 126.7, 126.6, 126.4, 125.9, 125.4, 124.9,
123.3, 122.4,122.3,122.1, 121.7, 121.3, 121.1, 119.3, 102.8, 62.6, 31.9, 27.0, 26.1, 25.8, 25.4, 24.9.
UV-vis (THF): A/nm (e/M~cm) 253 (1.8 x 10%), 285(sh) (1.1 x 10%), 364 (4.7 x 10°), 377(sh) (4.5 x 10%),
468 (1.2 x 103), 527(sh) (9.5 x 10?), 606(sh) (4.5 x 10%). HRMS-ESI (m/z): [M+Na]* calcd for Ca9Ha21rNsO,
904.2849; found, 904.2841.

Synthesis of Ir(piqCN),(acNac) (4). In the glovebox, [Ir(pigCN)2(u-Cl)]2 (33 mg, 0.024 mmol) was
suspended in 2 mL of THF. A solution of acNacK (13 mg, 0.059 mmol, 2.5 equiv.) in 5 mL THF was added
slowly to the stirred mixture. After stirring overnight at room temperature, the resulting dark purple
solution was concentrated in vacuo. The dark residue was extracted with 5 mL of toluene and filtered
through Celite. The toluene was removed under vacuum, and the solid was retrieved. Further
purification was done by dissolving in THF and slowly adding pentane to precipitate out the side
product, which was removed by filtration. The final product was retrieved upon concentration. Yield:
20 mg (50%). *H NMR (600 MHz, C¢Ds) 6: 9.44 (s, 1H, ArH), 9.34 (s, 1H, ArH), 8.40 (d, J = 8.4 Hz, 1H,
ArH), 8.21 (d, J = 8.4 Hz, 1H, ArH), 7.95-7.99 (m, 1H, ArH), 7.90 (t, J = 7.2 Hz, 2H, ArH), 7.53 (d, J = 7.8
Hz, 1H, ArH), 6.97-7.03 (m, 3H, ArH), 6.94 (t, J = 7.5 Hz, 1H, ArH), 6.75 (t, J = 7.5 Hz, 1H, ArH), 6.65 (d,
J=7.8 Hz, 1H, ArH), 6.51-6.59 (m, 3H, ArH), 6.41—6.45 (m, 2H, ArH), 6.35-6.40 (m, 2H, ArH), 6.02 (t, J
= 7.5 Hz, 1H, ArH), 5.02 (d, J = 7.8 Hz, 1H, ArH), 4.73 (s, 1H, PhNC(CH3)CHC(O)CHs), 1.55 (s, 3H, CHs),
1.33 (s, 3H, CH3). BC{*H} NMR (151 MHz, C¢D¢) 8: 179.1, 175.0, 174.2, 162.7, 161.3, 160.8, 149.0, 147.9,
145.9, 144.7, 143.4, 135.3, 135.2, 133.8, 133.6, 132.65, 132.56, 131.9, 131.3, 130.73, 130.67, 128.4,
128.25, 128.23, 127.0, 125.2, 124.9, 124.5, 124.3, 124.1, 123.0, 122.6, 121.4, 119.6, 115.6, 115.2,
103.6, 103.2, 99.1, 27.2, 24.3. UV-vis (THF): A/nm (¢/M~cm™) 309 (2.3 x 10%), 354 (1.7 x 10%), 385(sh)
(1.2 x 10%), 482 (1.9 x 10%), 532(sh) (1.6 x 103), 591 (1.0 x 10%). HRMS-ESI (m/z): [M+H]* calcd for
Ca3H30lrNsO, 826.2152; found, 826.2132.

Synthesis of Ir(pigCN):((dmp).NacNac) (5). In the glovebox, [Ir(pigCN)2(u-Cl)]2 (27 mg, 0.018 mmol)
was suspended in 4 mL of THF. A solution of (dmp).NacNacK (19 mg, 0.066 mmol, 3.7 equiv.) in 4 mL
THF was added slowly to the stirred mixture. After stirring overnight at room temperature, the
resulting brown solution was concentrated in vacuo. The dark residue was extracted with 6 mL of
toluene and filtered through Celite. The toluene was removed under vacuum, and the solid was
retrieved. Further purification was done by dissolving in THF and slowly adding pentane to precipitate
out the side product. The final product was retrieved upon concentration. Yield: 12 mg (35%). *H NMR
(500 MHz, CsDe) &: 9.84 (s, 2H, ArH), 8.23-8.27 (m, 2H, ArH), 7.91-7.95 (m, 2H, ArH), 7.59 (d, J = 8.4
Hz, 2H, ArH), 6.98-7.04 (m, 4H, ArH), 6.84 (d, J = 7.2 Hz, 2H, ArH), 6.68 (t, J = 7.2 Hz, 2H, ArH), 6.52—
6.57 (m, 2H, ArH), 6.27-6.32 (m, 4H, ArH), 6.24 (d, J = 7.8 Hz, 2H, ArH), 4.88 (s, 1H,
PhNC(CHs)CHC(CH3)NPh), 2.17 (s, 6H, CHs), 1.39 (s, 6H, CHs), 0.95 (s, 6H, CHs). 3C{*H} NMR (151 MHz,
THF-dg) 6: 176.0, 160.7, 158.1, 151.4, 148.9, 144.9, 135.2, 133.5, 132.6, 132.4, 131.8, 131.4, 129.3,
128.8,128.4,128.1,127.9,124.5,123.6,123.4,120.4,114.9, 101.6, 97.4, 24.8, 20.2, 16.5. UV-vis (THF):
Anm (e/Mcm™) 310 (2.0 x 10%), 368 (1.4 x 10%), 496 (3.0 x 10%). HRMS-ESI (m/z): [M+H]"* calcd for
Cs3HaslrNg, 957.3251; found, 957.3235.

Synthesis of Ir(pigCN):(dipma™) 6. In the glovebox, 2-bromomesitylene (15 mg, 0.075 mmol) was
dissolved in 2 mL THF and the solution was kept at —35° C for 1 h. A hexane solution of n-BulLi (0.3 mL,
0.25 M) was added, and the reaction mixture was stirred at -35 °C for 30 min. Then N,N'-
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diisopropylcarbodiimide (9.5 mg, 0.075 mmol) was added to the solution and the reaction mixture was
stirred at room temperature for another 10 min. The colorless solution was then added dropwise to a
Teflon-capped glass tube containing [Ir(pigCN),(u-Cl)]2 (45 mg, 0.033 mmol) in 5 mL THF. The resulting
dark purple mixture was stirred overnight outside of the glovebox at 85 °C. The mixture was cooled to
room temperature and the sealed tube was taken inside the glovebox for workup and purification. The
solvent was removed under reduced pressure and the residue was extracted into 5 mL toluene and
filtered through Celite. The crude product was washed with 3 x 3 mL of Et,O and 2 x 3 mL of hexane.
The solid was redissolved in minimum amount of THF and pentane was added to slowly induce
precipitation. The supernatant was decanted, and the product was triturated with Et,0O and the
resulting reddish-purple solid concentrated to dryness. Yield: 15 mg (25%). *H NMR (500 MHz, CsDs) :
10.24 (s, 2H, ArH), 8.46 (d, J = 8.5 Hz, 2H, ArH), 8.03 (d, J = 8.0 Hz, 2H, ArH), 7.96 (d, J = 8.5 Hz, 2H,
ArH), 6.95-7.05 (m, 4H, ArH), 6.66—6.75 (m, 4H, ArH), 6.64 (s, 2H, ArH), 6.55 (t, J = 7.3 Hz, 2H, ArH),
3.19 (sept, J = 6.4 Hz, 2H, (CH3)2CHN), 2.60 (s, 6H, CHs), 1.98 (s, 3H, CHs), 0.87 (d, J = 6.5 Hz, 6H, CH3),
—0.012 (d, J = 6.5 Hz, 6H, CH3). 3C{*H} NMR (151 MHz, C¢Ds) 6: 175.1, 162.9, 151.0, 144.3, 137.8, 135.5,
134.8, 133.0, 132.6, 131.9, 131.1, 128.9, 128.6, 124.9, 124.4, 120.4, 115.4, 103.2, 48.8, 25.2, 24.8,
21.2,20.7. UV-vis (THF): A/nm (¢/M™cm™) 315 (3.3 x 10%), 356 (2.3 x 10%), 388(sh) (1.3 x 10%), 535 (5.9
x 10%). HRMS-ESI (m/z): [M+Na]* calcd for CagHaslrNg, 919.3071; found, 919.3053.
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Table S1. Representative examples of previously reported top-performing red and DR-NIR luminescent
metal complexes, compared to the compounds in this study.

DR-NIR, CAN = pphen

(kex10° /s /

Complex Reference Medium Aem / NM OpL Tt/ us (ko x 10° / 1)

6 MeCN 649 0.27 1.69 1.6/4.3
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Ir(pphen),(acac)
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/2/
NS~

this work Toluene 736 0.080 0.21 3.8/44

Ir
Ph _Ph
NN
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DR-NIR, CAN = pigCN

Reference Medium Aem / NM

T/ us

(kex10°/sY) /
(knr x 107/ s7%)

1 THF 696

0.16

0.14

11/60

this work Toluene 709

0.53

0.53

10/8.9

this work Toluene 682

0.10

0.60

1.7/15

Ir(pigCN)2(dipba™) (6)

this work Toluene 749

0.30

0.22

14 /32
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Red and DR-NIR, Ir(pig)2(L*X) complexes

Complex Reference Medium

Aem / NM

G)PL

T/ us

(kex107°/s7) /
(ke x 107 / s74)

637

0.80

1.0

8.0/2.0

678

0.17

0.82

2.1/10

657

0.49

0.78

6.2/6.6

660

0.53

0.81

6.5/5.8

}NQ\N{ 8 THE
&

Ir(pig)2(dipba™®)

661

0.58

0.74

7.8/5.6
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Red and DR-NIR, other C~N ligands

(kex10°/sY) /

Complex Reference Medium Aem / NM O T/ ps (koe x 1075 / 571)
S
7\
_/ N\
\I 5
K
/ '\ 7 THF 622 0.79 5.3 1.5/0.40
N 2N
Ir(btp)2(dipba)
¢
7\
_ \
N 9 THF 718 0.28 1.9 1.5/38

Ir(btph)z(acac)
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DR-NIR, other metals

Complex

N CF;

Reference Medium Aem / NM

OpL T/ us ke x 107/ 7) /

e

N, _NT
Pt

3

Pt(fprpz).

F

10 Neat 740

(knr x 107 / s7%)

0.81 0.313 26/6.0

11 Crystal 688

0.24 0.177 14 /43

12 Toluene 706

0.16 1.1 1.5/7.6"

Ve
SN
N

Me,PhP” PPhMe,
Os(ftrmpz)2(PPhMez),

13 5% CBP film 737

0.40 0.308 1.3/1.9

m

N i~ /

N N

— 7\
N@

[Cr(ddpd)2]?*

N
\ /N\

2

BE

14 D0 775

0.14 1164 0.0012 /0.0074

[Cr([D2]-bpmp)a]**

D20
1s 20/

709
DCIO4

0.246 2500 0.00098 / 0.0030
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Table S2. Crystallographic Details of Complexes 1 and 6

1.2CH,Cl;-0.25CsH14

6-C4HgO-CsH1z

CCDC

2166715

2166716

Crystal data

Chemical formula

Cs2.50H43.50ClalrN3O

C57H53IrN60

M, 1066.40 1040.33
Crystal system, - _
space group Monoclinic, P2:1/c Triclinic, P1
Temperature (K) 123 123

a, b, ¢ (A) 16.734(2), 18.670(2), 11.9943(10), 12.8259(11),
14.2497(17) 17.1312(14)

a, B,y () 90, 93.064(1), 90 101.445(1), 107.231(1), 98.910(1)

Vv (A3 4445.5(9) 2402.0(3)

z 4 2

Radiation type Mo Ka Mo Ka

u (mm?) 3.29 2.83

Crystal size (mm)

0.92 x 0.26 x 0.18

0.52 x 0.40 x 0.30

Data collection

Tminp Tmax

0.414, 0.746

0.620, 0.746

No. of measured,
independent and
observed [/ > 25(/)]

62444, 10316, 9366

57884, 10583, 10186

reflections
Rint 0.036 0.025
(sin 0/A)max (A1) 0.652 0.641

Refinement

RIF* > 26(F?)], wR(F?), S

0.022, 0.062, 1.09

0.018, 0.049, 1.08

No. of reflections 10316 10583

No. of parameters 571 593

No. of restraints 21 0

Apmax, Apmin (€ A?) 1.80, -1.03 1.06, -0.60
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; —— Ir(pphen),(acNac) (1)
30 : —— Ir(pphen),(NacNac) (2)

Ig Ir(pphen),((Cy)acNac) (3)
s
5
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Al nm

Fig. S1. Overlaid UV-vis absorption spectra of Ir(pphen),(L*X) complexes 1-3, recorded in THF at room
temperature and plotted in units of molar absorptivity (g).
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Fig. S2. Overlaid and normalized UV-vis absorption spectra of Ir(pphen),(L*X) complexes 1-3, recorded
in THF at room temperature.
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Fig. $3. Overlaid UV-vis absorption spectra of Ir(pigCN),(L*X) complexes 4-6, recorded in THF at
room temperature and plotted in units of molar absorptivity (g).
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Fig. S4. Overlaid and normalized UV-vis absorption spectra of Ir(pigCN),(L*X) complexes 4-6, recorded
in THF at room temperature.
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Fig. S5. Overlaid photoluminescence spectra of complex 1, recorded in toluene, THF, and MeCN at
room temperature with Aex = 420 nm.
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Fig. S6. Overlaid photoluminescence spectra of complex 2, recorded in toluene, THF, and MeCN at
room temperature with Aex = 420 nm.
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Fig. S7. Overlaid photoluminescence spectra of complex 3, recorded in toluene, THF, and MeCN at
room temperature with Aex = 420 nm.
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Fig. $8. Overlaid photoluminescence spectra of complex 4, recorded in toluene, THF, and MeCN at
room temperature with Aex = 420 nm.
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Fig. S9. Overlaid photoluminescence spectra of complex 5, recorded in toluene, THF, and MeCN at
room temperature with Aex = 420 nm.
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Fig. $10. Overlaid photoluminescence spectra of complex 6, recorded in toluene, THF, and MeCN at
room temperature with Aex = 420 nm.
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Table S3. Summary of room-temperature photoluminescence data for complex 1-6 in MeCN, THF,

and toluene.
MeCN THF toluene
Complex Aem / NM (O] Aem / NM (01 T/ us ((l::xlf;://s?l)/ Aem / NM (01 T/ us ((l;(r:xlg;s//s?l)/
1 705 0.065 702 0.18 0.89 2.0/9.2 694 0.27 0.95 28/7.7
2 669 0.019 752 0.021 0.20 1.1/49 736 0.080 0.21 3.8/44
3 693 0.040 745 0.094 0.36 2.6/25 723 0.095 0.38 25/24
4 729 0.090 720 0.20 0.34 59/24 709 0.53 0.53 10/8.9
5 675 0.065 703 0.042 0.85 0.49/11 682 0.10 0.60 1.7/15
6 668 0.049 753 0.096 0.12 8.0/75 749 0.30 0.22 14/32
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Fig. S11. Excitation spectrum of complex 1, overlaid with its normalized absorption spectrum. Spectra
were recorded in THF at room temperature with Aem = 701 nm for the excitation spectrum.

—=— Absorption
—e— Excitation

Normalized Absorbance
Normalized Emission Intensity

300 400 500 600 700

A/ nm
Fig. S12. Excitation spectrum of complex 1, overlaid with its normalized absorption spectrum. Spectra
were recorded in toluene at room temperature with Aemy = 694 nm for the excitation spectrum.
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Fig. S13. Excitation spectrum of complex 2, overlaid with its normalized absorption spectrum. Spectra
were recorded in THF at room temperature with Aem = 750 nm for the excitation spectrum.
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Fig. S14. Excitation spectrum of complex 2, overlaid with its normalized absorption spectrum. Spectra
were recorded in toluene at room temperature with Aemy = 740 nm for the excitation spectrum.
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Fig. S15. Excitation spectrum of complex 3, overlaid with its normalized absorption spectrum. Spectra
were recorded in THF at room temperature with Aem = 740 nm for the excitation spectrum.

—=— Absorption | >
o) —e— Excitation &
o [}
G I=
= c
2 e}
9 7
< £
D i
N o)
2 £
o
Z

| N N N T T | | | N N N T T | | | N N N T T | | |

300 400 500 600

Al nm
Fig. S16. Excitation spectrum of complex 3, overlaid with its normalized absorption spectrum. Spectra
were recorded in toluene at room temperature with Aemy = 717 nm for the excitation spectrum.
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Fig. S17. Excitation spectrum of complex 4, overlaid with its normalized absorption spectrum. Spectra
were recorded in THF at room temperature with Aem = 721 nm for the excitation spectrum.
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Fig. $18. Excitation spectrum of complex 4, overlaid with its normalized absorption spectrum. Spectra
were recorded in toluene at room temperature with Aem = 707 nm for the excitation spectrum.
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Fig. $19. Excitation spectrum of complex 5, overlaid with its normalized absorption spectrum. Spectra
were recorded in THF at room temperature with Aem = 707 nm for the excitation spectrum.
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Fig. $20. Excitation spectrum of complex 5, overlaid with its normalized absorption spectrum. Spectra
were recorded in toluene at room temperature with Aem = 682 nm for the excitation spectrum.
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Fig. S21. Excitation spectrum of complex 6, overlaid with its normalized absorption spectrum. Spectra
were recorded in THF at room temperature with Aem = 753 nm for the excitation spectrum.
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Fig. S22. Excitation spectrum of complex 6, overlaid with its normalized absorption spectrum. Spectra
were recorded in toluene at room temperature with Aem = 750 nm for the excitation spectrum.
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Fig. S23. Photoluminescence decay trace for complex 1, recorded in toluene at room temperature
with 390 nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Fig. S24. Photoluminescence decay trace for complex 2, recorded in toluene at room temperature
with 390 nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Fig. S25. Photoluminescence decay trace for complex 3, recorded in toluene at room temperature
with 390 nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Fig. S26. Photoluminescence decay trace for complex 4, recorded in toluene at room temperature
with 390 nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Fig. S27. Photoluminescence decay trace for complex 5, recorded in toluene at room temperature
with 390 nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Fig. S28. Photoluminescence decay trace for complex 6, recorded in toluene at room temperature
with 390 nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Fig. S29. Overlaid photoluminescence spectra of complex 1, recorded in toluene at room temperature
and 77 K, with Aex =420 nm.
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Fig. S30. Overlaid photoluminescence spectra of complex 2, recorded in toluene at room temperature
and 77 K, with Aex = 420 nm. The peak labeled with an asterisk (*) arises from the second harmonic of
scattered excitation light.
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Fig. S31. Overlaid photoluminescence spectra of complex 3, recorded in toluene at room temperature
and 77 K, with Aex = 420 nm. The peak labeled with an asterisk (*) arises from the second harmonic of
scattered excitation light.
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Fig. $32. Overlaid photoluminescence spectra of complex 4, recorded in toluene at room temperature
and 77 K, with Aex = 420 nm.
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Fig. S33. Overlaid photoluminescence spectra of complex 5, recorded in toluene at room temperature
and 77 K, with Aex =420 nm.
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Fig. S34. Overlaid photoluminescence spectra of complex 6, recorded in toluene at room temperature
and 77 K, with Aex =420 nm.
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Fig. $35. Photoluminescence decay trace for complex 1, recorded in 2 wt% PMMA film at room
temperature with 390 nm excitation. The raw decay trace is shown in black, with the best-fit line
displayed in red.
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Fig. $36. Photoluminescence decay trace for complex 4, recorded in 2 wt% PMMA film at room
temperature with 390 nm excitation. The raw decay trace is shown in black, with the best-fit line

displayed in red.
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Fig. S37. Photoluminescence decay trace for complex 6, recorded in 2 wt% PMMA film at room
temperature with 390 nm excitation. The raw decay trace is shown in black, with the best-fit line

displayed in red.
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Fig. S38. 'H NMR spectrum of Ir(pphen).(acNac) (1), recorded at 600 MHz in CgDs.
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Fig. $39. 3C{*H} NMR spectrum of Ir(pphen),(acNac) (1), recorded at 151 MHz in CgDe.
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Fig. S41. >C{*H} NMR spectrum of Ir(pphen),(NacNac) (2), recorded at 151 MHz in C¢Ds.
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Fig. S42. *H NMR spectrum of Ir(pphen).((Cy)acNac) (3), recorded at 500 MHz in CgDs.
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Fig. S43. 3 C{*H} NMR spectrum of Ir(pphen),((Cy)acNac) (3), recorded at 151 MHz in CeDe.
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Fig. S44. 'H NMR spectrum of Ir(pigCN)z(acNac) (4), recorded at 600 MHz in CgDs.
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Fig. S45. 3C{*H} NMR spectrum of Ir(piqCN),(acNac) (4), recorded at 151 MHz in C¢De.
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Fig. S46. 'H NMR spectrum of Ir(pigCN);[(dmp)2(NacNac)] (5), recorded at 500 MHz in CgDs.
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Fig. S47. 13C{*H} NMR spectrum of Ir(pigCN)2[(dmp).(NacNac)] (5), recorded at 151 MHz in THF-ds.
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