Supporting Information

Interlayer Engineering of V₂O₅ Anode toward High Rate and Durable Dual Ion Batteries

Wenda Qiu,^{‡*a,b}, Yunlei Tian,^{‡a}, Shuting Lin,^a Aihua Lei,^a Zhangqi Geng,^a Kaitao Huang,^a Jiancong Chen,^a Fuchun Huang,^a Huajie Feng^{*c} and Xihong Lu^{*b} *Guangdong Industry Polytechnic College, Guangzhou 510300, Guangdong, China*

^b MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of

Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University,

Guangzhou 510275, Guangdong, China

^c Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou 571158, Hainan, China

*Corresponding Author.

E-mail: qiuwd3@mail3.sysu.edu.cn (W.D. Qiu), Fenghuajiehk@163.com (H.J. Feng), luxh6@mail.sysu.edu.cn (X.H. Lu)

‡ These authors contributed equally to this work.

Figure S1. SEM image of carbon fiber cloth

Figure S2. (a) SEM images, (b) TEM images (inset is the SAED pattern), and (c) HRTEM images of α -V₂O₅ NS.

Figure S3. N₂ adsorption-desorption isotherm of (a) α -V₂O₅ and (c) W-V₂O₅ NS. The pore size distribution of (b) α -V₂O₅ and (d) W-V₂O₅ NS.

Figure S4. FTIR spectra of α -V₂O₅ and W-V₂O₅ NS.

Figure S5. Raman spectra of α -V₂O₅ and W-V₂O₅ NS.

X 7'1 1	Raman shift (cm ⁻¹)		
Vibration modes	α -V ₂ O ₅ NS	W-V ₂ O ₅ NS	
Bending vibrations (B_{1g} , Bas of Ω -V- Ω)	144		
$\begin{array}{c} B_{2g} \text{ of } O + V + O \end{pmatrix}$ Bending vibrations (A _g , $B_{2g} \text{ of } O - V - O)$	196	138	
Bending vibrations (B _{2g} of V=O)	283	240	
Bending vibration (A _g of V–O)	302	249	
Bending vibrations (A _g of V=O)	407		
Stretching vibration (A_g of V_3 -O)	484	425, 472	
Stretching vibration (A _g of V ₃ -O)	528		
Stretching vibration (B _{3g} of V ₂ -O)	699	629,714	
Stretching vibration (A _g of V=O)	997	991	

Table S1. Raman peak assignment for α -V₂O₅ and W-V₂O₅ NS.

Figure S6. (a) Survey and (b) Li 1s XPS spectra of α -V₂O₅ and W-V₂O₅ NS.

Figure S7. EPR spectra of α -V₂O₅ and W-V₂O₅ NS.

Figure S8. Mott–Schottky plots of α -V₂O₅ and W-V₂O₅ NS.

Figure S9. TGA curves of α -V₂O₅ and W-V₂O₅ NS measured in argon atmosphere.

Figure S10. V L edges XANES spectra of α -V₂O₅ and W-V₂O₅ NS.

Figure S11. UPS spectra of α -V₂O₅ and W-V₂O₅ NS.

Figure S12. The CV curves at a scan rate of 0.2 mV s⁻¹ for the first five cycles of (a) α -V₂O₅ and (b) W-V₂O₅ NS.

Electrode	Specific	Rate performance	Cycling stability	Ref.
	capacity	I	- , ,,	
W-V ₂ O ₅ NS	293 mA h g^{-1} at		96.8% after 2000	This
	1 C	47.8% (1 to 40 C)	cycles at 1C	work
Mn _{0.1} V ₂ O ₅	$265 \text{ mA h g}^{-1} \text{ at}$	61.9% (0.1 to 20	94% after 500 cycles	1
	0.1 C	C)	at 3 C	
V ₂ O ₅ -cG	291 mA h g^{-1} at	56.4% (0.33 to	94% after 200 cycles	2
	0.33 C	16.67 C)	at 6.67 C	2
3D-V ₂ O ₅	267 mA h g ⁻¹ at	51.2% (1 to 20 C)	93% after 50 cycles	3

Table S2. Comparison of electrochemical performance of $W-V_2O_5$ NS and the other

V ₂ O ₅ -based	electrodes.
--------------------------------------	-------------

	0.5 C		at 0.5 C	
3S-V ₂ O ₅	$287.5 \text{ mA h g}^{-1}$	83% (0.33 to 3.33	92.8% after 200	4
HoMSs/Ni	at 1.67 C	C)	cycles at 1.67 C	
	291 mA h g^{-1} at	48.7% (1 to 100	92.8% after 600	5
V ₂ O ₅ /G	0.1 C	C)	cycles at 10 C	
V-O-/CNT	242.3 mA h g^{-1}	27.5% (0.2 to 20	92.3% after 80	6
• 205/CIVI	at 0.2 C	C)	cycles at 0.2 C	
V-Q-@G	224 mA h g^{-1} at	40.2% (0.1 to 100	91.7% after 200	7
• <u>2</u> 05@0	0.1 C	C)	cycles at 0.5 C	
	$265.9 \text{ mA h g}^{-1}$	48.9% (0.1 to 2	91% after 100 cycles	8
• 205	at 0.1 C	C)	at 0.33 C	
Ni V.O.	294 mA h g^{-1} at	56.5% (0.17 to 8	91% after 50 cycles	9
	0.17 C	C)	at 1 C	
V ₂ O ₅ /MWCT	292 mA h g^{-1} at	47.3% (0.2 to 4	90% after 100 cycles	10
	0.1 C	C)	at 1 C	
yolk-shelled	262 mΔ h σ ⁻¹ at		80% after 50 cycles	
V_2O_5	0.33 C	65% (0.33 to 8 C)	at 1 C	11
microspheres	0.55 C		at 1 C	
V_2O_5 yolk-	275 mA h σ ⁻¹ at	58% (0.6 to 6.7	87.6% after 50	
shell	0.67 C	C)	cycles at 0.17 C	12
microsphere	0.07 C	C,		

V ₂ O ₅ nanoflowers arrays@PRC	281 mA h g ⁻¹ at 0.2 C	49.8% (0.2 to 10 C)	87.5% after 500 cycles at 2 C	13
multilayer V ₂ O ₅ hollow sphere arrays	293 mA h g ⁻¹ at 0.5 C	51.9% (0.5 to 20 C)	87.4% after 300 cycles at 5 C	14
V ₂ O ₅ nanobelts	281 mA h g ⁻¹ at 0.2 C	33.2% (0.5 to 20 C)	86% after 50 cycles at 0.2 C	15
V ₂ O ₅ @GCNF	293 mA h g ⁻¹ at 0.1 C	36.2% (0.1 to 20 C)	85.7% after 700 cycles at 5 C	16
V ₂ O ₅ nanosheets	275 mA h g ⁻¹ at 0.2 C	76% (0.2 to 2 C)	82.4% after 250 cycles at 0.33 C	17
rGO/V ₂ O ₅	249 mA h g ⁻¹ at 0.33 C	45.4% (0.33 to 5 C)	81.5% after 200 cycles at 5 C	18
H-V ₂ O ₅ nanosheets	259 mA h g ⁻¹ at 0.33 C	54.8% (0.33 to 6.67 C)	81% after 200 cycles at 0.33 C	19
Interconnected V ₂ O ₅ microspheres	278 mA h g ⁻¹ at 0.5 C	59.7% (0.5 to 10 C)	81% after 200 cycles at 1 C	20
HP- V ₂ O ₅	283 mA h g ⁻¹ at 0.33 C	42% (0.33 to 6.67 C)	80.2% after 200 cycles at 3.33 C	21

SANS V-O-	235.5 mA h g ⁻¹	26.6% (0.1 to 10	78.6% after 300	22	
SAINS V_2O_5	at 1 C	C)	cycles at 2 C		
V ₂ O ₅	210.5 mA h g ⁻¹	44.6% (0.33 to	76.2% after 150	23	
microsphere	at 0.33 C	3.33 C)	cycles at 1 C	23	
	$285 \text{ mA h g}^{-1} \text{ at}$	55.3% (0.33 to 10	75.8% after 100	- <u>-</u>	
V ₂ O ₅ -II	0.33 C	C)	cycles at 1 C	27	
V ₂ O ₅ /N-	273 mA h g^{-1} at	66.3% (0.33 to	75.1% after 100	- -	
graphene	0.33 C	3.33 C)	cycles at 0.33 C	21	
Sisal-like	$261 \text{ mA h g}^{-1} \text{ at}$	35.4% (0.1 to 10	74.8% after 400	25	
V ₂ O ₅	0.2 C	C)	cycles at 1 C	23	
V ₂ O ₅ hollow	$250 \text{ mA h g}^{-1} \text{ at}$	5(0/ (1 to 10 C)	68.8% after 100	26	
microsphere	1 C	56% (1 to 10 C)	cycles at 1 C	20	
	$268 \text{ mA h g}^{-1} \text{ at}$	46.5% (0.33 to 15	67% after 100 cycles	27	
$v_2 O_5$ NAS/CC	0.33 C	C)	at 2 C	21	
V ₂ O ₅ /MWNT/	285 mA h g ⁻¹ at		66% after 100 cycles	28	
PAN	1 C	40.3% (1 to 20 C)	at 1 C	20	

Figure S13. The charge and discharge profiles at different current densities for (a) α -

 V_2O_5 and (b) W- V_2O_5 NS electrodes.

Figure S14. Cycling performance of α -V₂O₅ and W-V₂O₅ NS at high current density

of 40 C.

Figure S15. GITT charge discharge curves of α -V₂O₅ and W-V₂O₅ NS electrodes at 1

C.

Figure S16. Nyquist plots of α -V₂O₅ NS electrode at different potentials.

Figure S17. (a) R_s and (b) R_{ct} of α -V₂O₅ and W-V₂O₅ NS electrodes as a function of potential.

Figure S18. (a) CV curves at different scan rates, (b) log (*i*) vs. log (*v*) plots at six peaks in (a), (c) Surface capacitive contributions of α -V₂O₅ NS electrode at various scan rates.

Figure S19. Electrochemical performance of the graphite cathode tested in half cell. (a) CV curves collected at various scan rates, (b) GCD curves measured at different current density, (c) Specific capacity as a function of current density, (d) Nyquist plots, and (e) cycling performance at 1000 mA g^{-1} .

Figure S20. Electrochemical performance of W-V₂O₅//Li₃VO₄ device. (a) GCD curves of various cycle number at 100 mA g^{-1} , (b) GCD curves measured at different current density, (c) rate capability and Coulombic efficiency. (d) Ragone plots of W-V₂O₅//Li₃VO₄ device in comparison with the recently reported lithium ion batteries devices, and (e) cycle durability at 1 A g^{-1} .

References

- C. Peng, F. Xiao, J. Yang, Z.h. Li, G.t. Lei, Q.z. Xiao, Y.h. Ding and Z.L. Hu, Carbon-encapsulated Mn-doped V₂O₅ nanorods with long span life for high-power rechargeable lithium batteries. *Electrochim. Acta*, 2016, **192**, 216-226.
- B. Yan, X.F. Li, Z.M. Bai, Y. Zhao, L. Dong, X.S. Song, D.J. Li, C. Langford and X.L. Sun, Crumpled reduced graphene oxide conformally encapsulated hollow V₂O₅ nano/microsphere achieving brilliant lithium storage performance. *Nano*

Energy, 2016, 24, 32-44.

- Q.F. Li, D. Chen, H.T. Tan, X.H. Zhang, X.H. Rui and Y. Yu, 3D porous V₂O₅ architectures for high-rate lithium storage. *J. Energy Chem.*, 2020, 40, 15-21.
- Y.J. Zhu, M. Yang, Q.Y. Huang, D.R. Wang, R.B. Yu, J.Y. Wang, Z.J. Zheng and D. Wang, V₂O₅ textile cathodes with high capacity and stability for flexible lithium - ion batteries. *Adv. Mater.*, 2020, **32**, 1906205.
- J. Zeng, J.D. Huang, J. Liu, T. Xie, C.Q. Peng, Y.K. Lu, P.J. Lu, R.Z. Zhang and J. Min, Self-assembly of single layer V₂O₅ nanoribbon/graphene heterostructures as ultrahigh-performance cathode materials for lithium-ion batteries. *Carbon*, 2019, 154, 24-32.
- Q. Li, Y.F. Chen, J.R. He, F. Fu, F. Qi, J. Lin and W.L. Zhang, Carbon Nanotube Modified V₂O₅ Porous Microspheres as Cathodes for High-Performance Lithium-Ion Batteries. *Energy Technol.*, 2017, 5, 665-669.
- D.B. Kong, X.L. Li, Y.B. Zhang, X. Hai, B. Wang, X.Y. Qiu, Q. Song, Q.H. Yang and L.J. Zhi, Encapsulating V₂O₅ into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. *Energy Environ Sci.*, 2016, 9, 906-911.
- J.M. Son, S. Oh, S.H. Bae, S. Nam and I.K. Oh, A Pair of NiCo₂O₄ and V₂O₅ Nanowires Directly Grown on Carbon Fabric for Highly Bendable Lithium - Ion Batteries. *Adv. Energy Mater.*, 2019, 9, 1900477.
- Y.Z. Zheng, H.Y. Ding, E. Uchaker, X. Tao, J.F. Chen, Q.F. Zhang and G.Z. Cao, Nickel-mediated polyol synthesis of hierarchical V₂O₅ hollow microspheres with

enhanced lithium storage properties. J. Mater. Chem. A, 2015, 3, 1979-1985.

- B. Sun, K. Huang, X. Qi, X.L. Wei and J.X. Zhong, Rational Construction of a Functionalized V₂O₅ Nanosphere/MWCNT Layer-by-Layer Nanoarchitecture as Cathode for Enhanced Performance of Lithium-Ion Batteries. *Adv. Funct. Mater.*, 2015, 25, 5633-5639.
- A.Q. Pan, H.B. Wu, L. Yu and X.W. Lou, Template free synthesis of VO₂ hollow microspheres with various interiors and their conversion into V₂O₅ for lithium-ion batteries. *Angew. Chem.*, 2013, **125**, 2282-2286.
- Y.F. Dou, X. Liang, G.H. Gao and G.M. Wu, Template-free synthesis of porous
 V₂O₅ yolk-shell microspheres as cathode materials for lithium ion batteries. J.
 Alloy. Compd., 2018, 735, 109-116.
- H. Tan, X.Z. Yu, K. Huang, J.X. Zhong and B.A. Lu, Large-scale carambola-like V₂O₅ nanoflowers arrays on microporous reed carbon as improved electrochemical performances lithium-ion batteries cathode. *J. Energy Chem.*, 2020, **51**, 388-395.
- 14. M.H. Chen, X.H. Xia, J.F. Yuan, J.H. Yin and Q.G. Chen, Free-standing threedimensional continuous multilayer V₂O₅ hollow sphere arrays as highperformance cathode for lithium batteries. *J. Power Sources*, 2015, **288**, 145-149.
- 15. X.H. Rui, Y.X. Tang, O.I. Malyi, A. Gusak, Y.Y. Zhang, Z.Q. Niu, H.T. Tan, C. Persson, X.D. Chen, Z. Chen and Q.Y. Yan, Ambient dissolution–recrystallization towards large-scale preparation of V₂O₅ nanobelts for high-energy battery applications. *Nano Energy*, 2016, **22**, 583-593.

- 16. S. Wang, P.Y. Zhang, H. Tan, X.Y. Fan and K. Huang, V₂O₅ nanosheets anchored on graphitized carbon nanofibers network for free-standing cathode on performance-improved lithium ion batteries. *J. Power Sources*, 2019, **419**, 106-111.
- G.Z. Li, Y.C. Qiu, Y. Hou, H.F. Li, L.S. Zhou, H. Deng and Y.G. Zhang, Synthesis of V₂O₅ hierarchical structures for long cycle-life lithium-ion storage. *J. Mater. Chem. A*, 2015, **3**, 1103-1109.
- 18. N. Xu, J.Q. Liang, T. Qian, T.Z. Yang and C.L. Yan, Half-cell and full-cell applications of horizontally aligned reduced oxide graphene/V₂O₅ sheets as cathodes for high stability lithium-ion batteries. *RSC Adv.*, 2016, 6, 98581-98587.
- X. Peng, X.M. Zhang, L. Wang, L.S. Hu, S.H.S. Cheng, C. Huang, B. Gao, F. Ma, K.F. Huo and P.K. Chu, Hydrogenated V₂O₅ nanosheets for superior lithium storage properties. *Adv. Funct. Mater.*, 2016, 26, 784-791.
- 20. M.M. Rahman, A.Z. Sadek, I. Sultana, M. Srikanth, X.J. Dai, M.R. Field, D.G. McCulloch, S.B. Ponraj and Y. Chen, Self-assembled V₂O₅ interconnected microspheres produced in a fish-water electrolyte medium as a high-performance lithium-ion-battery cathode. *Nano Res.*, 2015, **8**, 3591-3603.
- 21. L.Q. Mai, Q.Y. An, Q.L. Wei, J.Y. Fei, P.F. Zhang, X. Xu, Y.L. Zhao, M.Y. Yan,
 W. Wen and L. Xu, Nanoflakes-Assembled Three-Dimensional Hollow-Porous
 V₂O₅ as Lithium Storage Cathodes with High-Rate Capacity. *Small*, 2014, 10, 3032-3037.
- 22. J.F. Huang, X.N. Qiao, Z.W. Xu, L.Y. Cao, H.B. Ouyang, J.Y. Li and R.Y. Wang,

V₂O₅ self-assembled nanosheets as high stable cathodes for Lithium-ion batteries. *Electrochim. Acta*, 2016, **191**, 158-164.

- S.K. Park, P. Nakhanivej, J.S. Yeon, K.H. Shin, W.M. Dose, M. De Volder, J.B. Lee, H.J. Kim and H.S. Park, Electrochemical and structural evolution of structured V₂O₅ microspheres during Li-ion intercalation. *J. Energy Chemistry*, 2021, 55, 108-113.
- 24. X.T. Gao, X.D. Zhu, S.R. Le, D.J. Yan, C.Y. Qu, Y.J. Feng, K.N. Sun and Y.T. Liu, Boosting High-Rate Lithium Storage of V2O5 Nanowires by Self-Assembly on N-Doped Graphene Nanosheets. *ChemElectroChem*, 2016, **3**, 1730-1736.
- 25. N.T. Wu, W.Z. Du, G.L. Liu, Z. Zhou, H.R. Fu, Q.Q. Tang, X.M. Liu and Y.B. He, Synthesis of hierarchical sisal-like V₂O₅ with exposed stable {001} facets as long life cathode materials for advanced lithium-ion batteries. *ACS Appl. Mater. Interfaces*, 2017, **9**, 43681-43687.
- Y.L. Shan, L. Xu, Y.J. Hu, H. Jiang and C.Z. Li, Internal-diffusion controlled synthesis of V₂O₅ hollow microspheres for superior lithium-ion full batteries. *Chem. Eng. Sci.*, 2019, **200**, 38-45.
- 27. K. Ma, X. Liu, Q.L. Cheng, P. Saha, H. Jiang and C.Z. Li, Flexible textile electrode with high areal capacity from hierarchical V₂O₅ nanosheet arrays. J. *Power Sources*, 2017, 357, 71-76.
- 28. J.H. Lee, J.M. Kim, J.H. Kim, Y.R. Jang, J.A. Kim, S.H. Yeon and S.Y. Lee, Toward Ultrahigh - Capacity V₂O₅ Lithium-Ion Battery Cathodes via One-Pot Synthetic Route from Precursors to Electrode Sheets. *Adv. Mater. Interfaces*, 2016,

, 1600173.