Supplementary Information

Infinite Building Blocks for Directed Self-Assembly of A Supramolecular Polyoxometalate-Cyclodextrin Framework for Multifunctional Oxidative Catalysis

Xiaohui Liu, [‡] ^a Jinlin Zhang, [‡] ^a Yuxin Lan, ^a Qi Zheng^{*b} and Weimin Xuan ^{*a}

^a College of Chemistry and Chemical Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P. R. China. E-mail: weiminxuan@dhu.edu.cn

^b State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China. E-mail: qi.zheng@dhu.edu.cn

Contents

1. Materials	3
2. Instrumentation	3
3. Synthesis	4
4. Crystallographic data and crystal structures of 1	6
5. Bond valence sum (BVS) calculations of Mn, Ce and V atoms in 1	7
6. NMR spectra of 1 and α-CD	8
7. FT-IR spectra of {MnV ₁₃ }, {PW ₁₀ V ₂ }, α -CD and 1	10
8. Dye adsorption by 1 and 1-CL _{0.5}	11
9 PXRD spectra of 1 and 1-CL _{0.5}	12
10. TGA result of 1 and 1-CL _{0.5}	13
11. FT-IR spectra of 1, 1-CL _{0.5} and HDI	13
12. The general procedure of sulfoxidation by 1	15
13. The general procedure of sulfoxidation by 1-CL _{0.5} at r.t	20
	S1

14. The general procedure of sulfoxidation by 1-CL $_{0.5}$ at 40 °C.	21
15. General process of oxidative cleavage of alkenes by 1-CL _{0.5}	24
16. Recycling experiments	30
17. References	

1. Materials

 $Na_7[MnV_{13}O_{38}] \cdot 18H_2O^{[1]}, Na_9[\alpha-PW_9O_{34}] \cdot 7H_2O^{[2]} and K_5PW_{10}V_2O_{40}^{[3]}$ were synthesized according to the literature. Ce(NO₃)₃ · 6H₂O was purchased from Admas-beta, α -CD was purchased from Rhawn, Ltd, respectively. All reagents were of A.R. grade and used without further purification.

2. Instrumentation

Crystallography: Single-crystal X-ray diffraction data of **1** was collected at 150 K at Donghua University (Shanghai) using Mo-K α (λ = 0.71073 Å) Bruker D8 venture X-ray single crystal diffractometer for several times, and the best dataset was chosen to be indexed, integrated and scaled using the APEX 3 program^[4]. The structure was solved by the direct methods with ShelXT^[5] and refined with ShelXL^[6] using OLEX 2^[7]. All non-hydrogen atoms are anisotropic refined by the least square method, and the hydrogen atoms are determined by the ideal geometry by the theoretical hydrogenation method. CCDC-2209404 (1), contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Element Analyses: C, N and H content were determined by VARIDEL III Elemental Analyzer. The contents of Mn, V, Ce, P, W and Na were determined from Prodigy-ICP plasma spectrometer by dissolving 2 mg of **1** in 10 mL of 1M HNO₃ solution.

Thermogravimetric Analysis (TGA): Thermogravimetric analysis was performed on a METTLER TOLEDO TG8000 Thermogravimetric Analyzer under nitrogen flow at a typical heating rate of 10 °C·min⁻¹.

Powder X-ray Diffraction (PXRD): Powder XRD was recorded on a Haoyuan DX-2700B

diffractometer equipped with monochromatized Cu-K α ($\lambda = 1.5418$ Å) radiation in the range of $3^{\circ} \le 2\theta \le 50^{\circ}$, with a scanning rate of 0.04° s⁻¹.

Fourier-transform infrared (FT-IR) spectroscopy: The samples were prepared as a KBr pellet and the FT-IR spectrum was collected in transmission mode in the range of 500-4000 cm⁻¹ using a NEXUS-670 spectrometer. Wavenumbers are given in cm⁻¹. Wavenumbers are given in cm⁻¹. Intensities are denoted as w = weak, m = medium, s = strong, vs = very strong, br = broad.

GC mass spectra: GC-Mass analysis was carried out on Agilent 8860 GC system and 5977B GC/MSD system with EI mode

Nuclear Magnetic Resonance Spectroscopy: All the NMR spectra were recorded on Bruker AVANCE III HD 600MHz spectrometer. The experimental details are described as bellow: **1** (30mg) was added to a solution of 800 µL 1M DCl and sonicated for 10 minutes to make a clear solution. After filtration, the liquid is transferred to 5 mm NMR tube for ¹H NMR and ³¹P NMR test at Larmor frequencies of 600.0 and 162.0 MHz, respectively. The solid-state ¹³C NMR and ³¹P NMR spectra were collected on the 600MHz spectrometer utilizing a 1.9 mm Bruker HXY probe at a MAS frequency of 30 kHz with sample loading of 200 mg.

3. Synthesis

Synthesis of H₂Ce₃(H₂O)₁₃(MnV₁₂O₃₈)_{0.5}(PW₁₀V₂O₄₀)(C₃₆H₆₀O₃₀)·20H₂O. (1)

 $Na_7[MnV_{13}O_{38}]$ ·18H₂O (0.01 mmol, 18 mg), $Na_9[\alpha$ -PW₉O₃₄]·7H₂O (0.02 mmol, 48.2 mg) and α -CD (0.056 mmol, 54.5 mg) were dissolved in H₂O (2 mL) (Solution A), Ce(NO₃)₃·6H₂O was dissolved in H₂O (0.5 mL)(Solution B), then add solution B to solution A under stirring conditions, stir at room temperature for a few minutes. The resultant solution was heated at 40 °C for 2 hours. After cooled to room temperature, The solution was filtered in a 10ml small glass bottle and volatilized at room temperature, Yellow rod crystals were obtained after two weeks. (yield: 41.00 mg, 40.36 % based on $Na_7[MnV_{13}O_{38}]$ ·18H₂O). Anal. Calcd for

 $H_2Ce_3(H_2O)_{13}(MnV_{12}O_{38})_{0.5}(PW_{10}V_2O_{40})(C_{36}H_{60}O_{30}) \cdot 20H_2O$ (MW = 5236.74), EA(%): Mn: 0.52; V: 7.78; Ce: 8.02; P: 0.59; W: 35.10; Na: 0.00; C: 8.25; H: 2.46; found: Mn: 0.59; V: 8.04; Ce: 8.27; P: 0.59; W: 35.45; Na: 0.02; C: 8.34; H: 2.45. IR (KBr pellet, 4000 - 500 cm⁻¹): 3310, 2923, 1617, 1340, 1150, 1076, 1029, 952, 916, 792, 599, 514, 423.

Synthesis of 1-CL_{0.5}

Compound **1** was immersed in anhydrous THF for solvent exchange and then vacuated at 120 °C for 24 hours to remove guest water molecules. The dried **1** (0.02 mmol, 105 mg) was then added into a 10ml three neck flask, followed by addition of hexamethylene diisocyanate (0.18 mmol, 32μ L, 0.5 equivalent of 18 hydroxyl groups on α -cyclodextrin) and dry DMF (2 mL). The mixture was then heated at 70 °C for 24h, filtered and washed by isopropyl alcohol to afford **1-CL**_{0.5} as yellow powder. (yield: 103.00 mg, 75.79 % based on compound **1**). Anal. Calcd for H₂Ce₃(H₂O)₁₃(MnV₁₂O₃₈)_{0.5}(PW₁₀V₂O₄₀)(C₃₆H₆₀O₃₀)(HDI)₉(DMF)₆ (MW = 6826.739), EA(%): Mn: 0.40; V: 5.97; Ce: 6.16; P: 0.45; W: 26.93; C: 22.15; H: 3.45; N: 4.92; found: Mn: 0.48; V: 6.04; Ce: 6.34; P: 0.41; W: 27.15, C: 22.42; H: 3.65; N: 4.66. IR (KBr pellet, 4000 - 500 cm⁻¹): 3320, 2929, 2854, 1616, 1569, 1253, 1049, 912, 794, 599, 514, 423.

Compound	1
Empirical formula	$C_{36}H_{138}Ce_{3}Mn_{0.50}O_{127}PV_{8}W_{10}$
Formula weight	5328.28
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2
a /Å	30.250(9)
b /Å	36.327(10)
c /Å	17.050(4)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
$V/Å^3$	18736(9)
Z	4
ρ calc /g·cm ⁻³	1.889
μ (MoK α) /mm ⁻¹	7.332
F(000)	9982
2θ range /°	1.885 to 25.326
	-36<=h<=36
Index ranges	-43<=k<=43
	-20<=1<=20
Reflections collected	298878
Data / restraints / parameters	34151 / 45 / 1453
$R_1/wR_2 (I>2\sigma(I))^a$	0.0460/0.1134
R_1/wR_2 (all data)	0.0502/0.1165
GooF (all data) ^b	1.044
Data completeness	99.9%

4. Crystallographic data and crystal structures of 1

 Table S1 Crystallographic Details for 1

$$\label{eq:aR1} \begin{split} & {}^{a}R_{1} \overline{= \sum ||Fo|-|Fc|} \; |/\sum |Fo|; \; wR_{2} = \{ \sum w[(Fo)^{2}-(Fc)^{2}]^{2} / \sum w[(Fo)^{2}]^{2} \}^{1/2} \\ & {}^{b}GooF = \{ \sum w[(Fo)^{2}-(Fc)^{2}]^{2} / (n-p) \}^{1/2} \end{split}$$

5. Bond valence sum (BVS) calculations of Mn, Ce and V atoms in 1

compound 1	BVS calc. for Mn (III)	BVS calc. for Mn (IV)
Mn1	3.8456	4.0248
compound 1	BVS calc. for Ce (III)	BVS calc. for Ce (IV)
Cel	3.263	2.740
Ce2	3.265	2.756
Ce3	3.265	2.864
compound 1	BVS calc. for V (IV)	BVS calc. for V (V)
compound 1 V1	BVS calc. for V (IV) 4.694	BVS calc. for V (V) 4.995
compound 1 V1 V2	BVS calc. for V (IV) 4.694 4.790	BVS calc. for V (V) 4.995 5.097
compound 1 V1 V2 V3	BVS calc. for V (IV) 4.694 4.790 4.593	BVS calc. for V (V) 4.995 5.097 4.888
compound 1 V1 V2 V3 V4	BVS calc. for V (IV) 4.694 4.790 4.593 4.593	BVS calc. for V (V) 4.995 5.097 4.888 4.888

Table S2 Bond valence sum (BVS) calculations of Mn, Ce and V atoms in compound 1.

Figure S1 Mono-capped square antiprism configuration of Ce³⁺ in compound 1

Figure S2 Multiple hydrogen bonding between coordinated H_2O on Ce centers (a), {PW₁₀V₂} (b) and α -CD in compound 1

Figure S3 The XPS analysis of a) Mn; b) Ce; c) V; d) W in compound 1

6. NMR spectra of 1 and α-CD

Figure S4 ¹H NMR spectra of 1 and α -CD in a mixture of DCl and D₂O

Figure S5 ³¹P NMR spectrum of 1 in a mixture of DCl and D₂O, $\{PW_9V_3\}(\delta 13.78 \text{ ppm}), \{PW_{10}V_2\}(\delta 14.45 \text{ ppm}) \text{ and } \{PW_{11}V\}(\delta 14.56 \text{ ppm})$

Figure S6 Solid-state 13 C NMR spectra of α -CD, 1 and 1-CL_{0.5}

Figure S7 Solid-state ³¹P NMR spectra of 1 and 1-CL_{0.5}

Figure S8 The FT-IR spectra of $Na_7[MnV_{13}]$ ·18H₂O ({MnV_{13}}), K₅PW₁₀V₂O₄₀ ({PW₁₀V₂}), α -CD and 1.

Figure S9 N₂ adsorption of 1.

Figure S10 CO₂ adsorption of 1.

8. Dye adsorption by 1 and 1-CL_{0.5}

Preparation of the working curves of Dyes: The standard solutions of rhodamine B (RB) and methylene blue (MB) were prepared in a sequential concentration of 1mg/L, 5mg/L, 10mg/L, 15mg/L and 20mg/L, respectively. These standard solutions were then tested by Uv-Vis spectrometer to make working curves based on the relationship between absorption and concentration.

Dye adsorption experiment: Taking 3 mL of 20mg/L standard solution (RB/MB) into a 50 mL glass bottle, 3 mg 1/1-CL_{0.5} was subsequently added and stirred for 24 hours. The solution was then filtered and used for testing its absorbance with a spectrometer. The amount of absorbed dye molecules per formula was evaluated by comparing their absorbances with the working curves.

Figure S11 UV-Vis absorption spectra of Rhodamine B (RB) and methylene blue (MB) solution before and after adsorption by 1 and 1-CL_{0.5}. RB/MB (20 mg/L, 3 mL), 1/1-CL_{0.5}(3 mg), 24 h.

9 PXRD spectra of 1 and 1-CL_{0.5}

Figure S12 Experimental and simulated PXRD patterns of 1 and 1-CL_{0.5}.

10. TGA result of 1 and 1-CL_{0.5}

Figure S13 TGA curve for 1 and 1-CL_{0.5}.

Figure S14 The FT-IR spectra of 1, 1-CL_{0.5} and hexamethylene diisocyanate(HDI)

Figure S15 N₂ adsorption of 1-CL_{0.5}

Figure S16 CO₂ adsorption of 1-CL_{0.5}

12. The general procedure of sulfoxidation by 1

Compound 1 (0.4 mol%), sulfide (0.2 mmol), H_2O_2 (1.05 eq), internal standard (mesitylene 0.2 mmol) and solvent (2 mL) are added into the test tube ($\varphi 20 \text{ mm} \times 170 \text{ mm}$), and the magnetic stir bar coated with PTFE is added for stirring at room temperature for certain time. After the reaction, the reaction solution is tested by GC-MS, and the products are confirmed by comparison of their GC-Mass spectra with those of authentic data, and the yield is calculated according to the internal standard. Thioanisole is taken as a model compound. Similarly, we screen solvent, the amount of catalyst and H_2O_2 . After the reaction, the catalyst is deposited at the bottom of the centrifuge tube by centrifugation, which is conducive to the recovery of the catalyst. The recovered catalyst is washed with methanol and dried.

S 2a	$\begin{array}{c c} & 1 \\ \hline & Solvent (2 \text{ mL}) \\ 30\% \text{ H}_2\text{O}_2 (1.2 \text{ eq}), \text{ r.t. 12 h} \end{array}$	3a	
		Yields	(%) ^b
Entry	solvent	3a	4a
1	Methanol	83	17
2	Ethanol	45	25
3	Acetonitrile	25	5
4	Ethyl ether	24	39
5	Ethyl acetate	22	41
6	Acetone	10	n.d.
7	2-Butanone	37	11
8	Dichloromethane	38	7
9	(trifluoromethyl)benzene	10	45
10	Tetrahydrofuran	26	4
11	Trichloromethane	41	18
12	N,N-Dimethylformamide	25	n.d.
13	Dimethyl sulfoxide	n.d.	n.d.

Table S3 Screening the solvents for catalytic oxidation of sulfides^a

^{*a*}Reaction conditions: 2a (0.2 mmol), **1** (0.4 mol%), 30% H_2O_2 (1.2 eq), r.t., methanol (2 mL), 12 h. ^{*b*}Yields are determined by GC-MS using mesitylene as an internal standard. The "n.d." means "not detected".

S 2a	$\frac{1}{MeOH (2 mL)}$ 30% H ₂ O ₂ (1.2 eq), r.t. 12 h	3a	
		Yiel	ds (%) ^b
Entry	Amount of catalyst (mol%)	3a	4a
1	0.1	90	3
2	0.2	92	8
3	0.4	95	5
4	0.6	87	13

Table S4 Screening the amount of catalyst for catalytic oxidation of sulfides^a

^{*a*}Reaction conditions: 2a (0.2 mmol), 30% H_2O_2 (1.2 eq), r.t., methanol (2 mL), 12 h. ^{*b*}Yields are determined by GC-MS using mesitylene as an internal standard.

	1 MeOH (2 mL) 30% H₂O₂, r.t. 6 h	3a	
		Yiel	ds (%) ^b
Entry	Oxidant/substrate (eq)		4a
1	1.00	86	n.d.
2	1.05	95	5
3	1.10	94	2
4	1.20	93	4
5	1.30	93	7
6	1.40	90	10

Table S5 Screening the amount of H₂O₂ for catalytic oxidation of sulfides^a

^{*a*}Reaction conditions: 2a (0.2 mmol), **1** (0.4 mol%), 30% H_2O_2 , r.t., methanol (2 mL), 6 h. ^{*b*}Yields are determined by GC-MS using mesitylene as an internal standard. The "n.d." means "not detected".

	$\begin{array}{c} S \\ \hline \\ 2a \end{array} \xrightarrow{ \begin{array}{c} catalyst \\ MeOH (2 mL) \\ 30\% H_2O_2 (1.05 eq), r.t. 6 h \end{array}} \begin{array}{c} O \\ S \\ \hline \\ 3a \end{array} + $		0,0 S 4a
		Yields	(%) ^b
Entry	Catalyst	3a	4a
1	1	95	5
2^c	—	7	n.d.
3^d	Na ₇ [MnV ₁₃]·18H ₂ O	60	40
4 ^{<i>e</i>}	$K_5 PW_{10}V_2O_{40}$	30	n.d.
5 ^{<i>f</i>}	Ce(NO ₃) ₃ ·6H ₂ O	55	Trac e
6 ^g	a-cyclodextrin	n.d.	n.d.
7	$Na_{7}[MnV_{13}] \cdot 18H_{2}O, K_{5}PW_{10}V_{2}O_{40}$	83	14
8	Na ₇ [MnV ₁₃] ¹ 8H ₂ O, Ce(NO ₃) ₃ [.] 6H ₂ O	83	17
9	$Na_7[MnV_{13}]$ 18H ₂ O, α -cyclodextrin	88	12
10	$K_5PW_{10}V_2O_{40}, Ce(NO_3)_3 \cdot 6H_2O$	83	12
11	Na ₇ [MnV ₁₃]·18H ₂ O, K ₅ PW ₁₀ V ₂ O ₄₀ , Ce(NO ₃) ₃ . 6H ₂ O	88	7
12	K-PW-vV-Q-o-g-evelodevtrin	24	Trac
12	K51 W 10 V 2040, u-cyclodextini	24	e
13	Ce(NO ₃) ₃ ·6H ₂ O, α -cyclodextrin	48	3
14	$Na_7[MnV_{13}]\cdot 18H_2O, K_5PW_{10}V_2O_{40}, \alpha\text{-cyclodextrin}$	89	10
15	$Na_7[MnV_{13}]$ ·18H ₂ O, Ce(NO ₃) ₃ . 6H ₂ O, α -cyclodextrin	91	9
16	$K_5PW_{10}V_2O_{40}$, Ce(NO ₃) ₃ . 6H ₂ O, α -cyclodextrin	81	7
17	$Na_{7}[MnV_{13}]$ ·18H ₂ O, K ₅ PW ₁₀ V ₂ O ₄₀ ,	88	10
1 /	Ce(NO ₃) ₃ . 6H ₂ O, α-cyclodextrin	00	10

Table S6 Catalytic oxygenation of 2a using various catalysts and methanol as

solvent^a

^{*a*}Reaction conditions: 2a (0.2 mmol), **1** (0.4 mol%), 30% H₂O₂ (1.05 eq), r.t., methanol (2 mL), 6 h. ^{*b*}Yields are determined by GC-MS using mesitylene as an internal standard. ^{*c*}No catalyst. ^{*d*}Na₇[MnV₁₃]·18H₂O (0.4 mol%). ^{*e*}K₅PW₁₀V₂O₄₀ (0.8 mol%). ^{*f*}Ce(NO₃)₃·6H₂O (2.4 mol%). ^{*g*}αcyclodextrin (0.8 mol%). The "n.d." means "not detected".

Figure S17 Relationship between conversion and selectivity of sulfoxidation of thioanisole over time

Figure S18 Comparison of the PXRD patterns of 1 before and after sulfoxidation

Figure S19 The FT-IR spectra of 1 before and after catalysis.

Element	Mn	V	Ce	Р	W	С	Н
Calculated value (%)	0.52	7.78	8.02	0.59	35.10	8.25	2.46
Actual value (%)	0.59	8.04	8.27	0.59	35.45	8.34	2.45
After catalysis (%)	0.59	7.94	8.19	0.62	35.78	8.15	2.59
Mother liquor after catalyst filtration (%)	0.01	0.13	0.13	0.02	0.55	-	-

Table S7 Elemental Analysis of 1 after Catalysis

13. The general procedure of sulfoxidation by 1-CL_{0.5} at r.t.

1-CL_{0.5} (0.4 mol%), sulfide (0.2 mmol), H_2O_2 (1.05 eq), internal standard (mesitylene 0.2 mmol) and solvent (2 mL) are added into the test tube (φ 20 mm × 170 mm), and the magnetic stir bar coated with PTFE is added for stirring for 19h at room temperature. After the reaction, the reaction solution is tested by GC-MS, and the products are confirmed by comparison of their GC-Mass spectra with those of authentic data, and the yield is calculated according to the internal standard. After the reaction, the catalyst is deposited at the bottom of the centrifuge tube by centrifugation, which is conducive to the recovery of the catalyst. The recovered catalyst is washed with methanol and dried.

$R_1 \sim S R_2$ 2	I-CL _{0.5} MeOH (2 mL) 30% H ₂ O ₂ (1.05 eq), r.t.	$\xrightarrow{\text{O}}_{\text{H}} \mathbf{R}_{1} \xrightarrow{\text{S}} \mathbf{R}_{2}$ 19 h 3	$+ \begin{array}{c} 0 \\ R_1 \\ \end{array} \\ \begin{array}{c} 0 \\ R_2 \end{array}$
Entry	Substrate		Yields (%) ^b
1	~ S	R=H	3a/4a=80/5
2		R=CH ₃	3b/4b=83/5
3	R ~	R=Cl	3c/4c=63/2
4	~~~ ^{\$} ~~~		3d/4d=94/6
5	S		3e/4e=59/5

Table S8 Substrate scope of catalytic oxidation of sulfides^a

^{*a*}Reaction conditions: 2a (0.2 mmol), **1-CL_{0.5}** (0.4 mol%), 30% H₂O₂ (1.05 eq), r.t., methanol (2 mL), 19 h. ^{*b*}Yields are determined by GC-MS using mesitylene as an internal standard.

14. The general procedure of sulfoxidation by 1-CL_{0.5} at 40 °C.

1-CL_{0.5} (0.4 mol%), sulfide (0.2 mmol), H_2O_2 (1.10 eq), internal standard (mesitylene 0.2 mmol) and solvent (2 mL) are added into the test tube (φ 20 mm × 170 mm), and the magnetic stir bar coated with PTFE is added for stirring for 6h at 40 °C. After the reaction, the reaction solution is tested by GC-MS, and the products are confirmed by comparison of their GC-Mass spectra with those of authentic data, and the yield is calculated according to the internal standard. After the reaction, the catalyst is deposited at the bottom of the centrifuge tube by centrifugation, which is conducive to the recovery of the catalyst. The recovered catalyst is washed with methanol and dried.

S 2a	1-CL _{0.5} MeOH (2 mL) 30% H ₂ O ₂ (1.05 eq), 6 h	3a	
		Yield	ds (%) ^b
Entry	Temperature (°C)	3a	4a
1	r.t.	48	n.d.
2	40	88	4
3	50	79	2
4	60	80	4

Table S9 Screening the temperature for catalytic oxidation of sulfides^a

^{*a*}Reaction conditions: 2a (0.2 mmol), **1-CL**_{0.5} (0.4 mol%), 30% H₂O₂, methanol (2 mL), 6 h. ^{*b*}Yields are determined by GC-MS using mesitylene as an internal standard. The "n.d." means "not detected".

Table S10 Screening the amount of H_2O_2 for catalytic oxidation of sulfides at 40

°Ca

S - 2a	1-CL_{0.5} MeOH (2 mL) 30% H ₂ O ₂ , 40°C 6 h	$ \begin{array}{c} $	
		Yiel	ds (%) ^b
Entry	Oxdant/substrate (eq)	3a	4a
1	1.05	87	4
2	1.10	95	5
3	1.15	91	9
4	1.20	85	15

^{*a*}Reaction conditions: 2a (0.2 mmol), **1-CL**_{0.5} (0.4 mol%), 30% H₂O₂, 40 °C, methanol (2 mL), 6 h. ^{*b*}Yields were determined by GC-MS using mesitylene as an internal standard.

Figure S20 The FT-IR spectrum of $1-CL_{0.5}$ before and after thioether catalysis

Element	Mn	V	Ce	Р	W	C	Н	N
Calculated value (%)	0.40	5.97	6.16	0.45	26.93	22.15	3.45	4.92
Actual value (%)	0.48	6.04	6.34	0.41	27.15	22.42	3.65	4.66
After catalysis (%)	0.40	6.15	5.94	0.47	27.27	22.46	3.53	4.60
Mother liquor after catalyst filtration (%)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-

Table S11 Elemental Analysis of 1-CL_{0.5} after Catalysis

Figure S21 Hot filtration experiment using $1-CL_{0.5}$ for the catalytic oxidation of benzyl sulfide.

15. General process of oxidative cleavage of alkenes by 1-CL_{0.5}

1-CL_{0.5} (0.3 mol%), alkene compounds (0.6 mmol), H_2O_2 (2.5 eq), internal standard (mesitylene/n-Hexadecane 0.2 mmol) and solvent (2 mL) are added into the seal tube, and the magnetic stir bar coated with PTFE is added for stirring at room temperature. After the reaction, the reaction solution is tested by GC-MS, and the products are confirmed by comparison of their GC-Mass spectra with those of authentic data, and the yield is calculated according to the internal standard. 4-CHlorostyrene is taken as a model compound. Similarly, we screen solvent, the amount of catalyst and H_2O_2 . After the reaction, the catalyst is deposited at the bottom of the centrifuge tube by centrifugation, which is conducive to the recovery of the catalyst. The recovered catalyst is washed with methanol and dried.

~ ~			O 	O
ci -	<u>1-CL_{0.5}</u> solvent (2 mL) 30% H-O ₂ (2 5 eq) 80°C 4 h		+	+ ОН
5a	5070 H202 (2.5 cq), 00 C 4 H	6a	7a	8a

Table S12 Screening the solvents for alkene compounds to aldehydes^a

		Yields (%) ^b			
Entry	solvent	6a	7a	8a	
1	Acetonitrile	83	7	7	
2	Ethyl acetate	72	9	9	
3	Methanol	53 ^c	6	22^d	
4	Ethanol	70^{e}	4	10 ^f	
5	Tetrahydrofuran	16	13	n.d.	
6	Acetone	65	14	5	
7	1,4-Dioxane	34	4	2	
8	N,N- Dimethylformamide	21	8	4	
9	Dimethyl sulfoxide	10	n.d.	n.d.	
10	Dichloromethane	n.d.	n.d.	n.d.	
11	Dichloroethane	n.d.	n.d.	n.d.	
12	Trichloromethane	n.d.	n.d.	n.d.	
13	Toluene	n.d.	n.d.	n.d.	

^{*a*}Reaction conditions: 5a (0.6 mmol), **1-CL**_{0.5} (0.05 mol%), 30% H₂O₂ (2.5 eq), 80 °C, 4 h. ^bYields are determined by GC-MS using mesitylene as an internal standard. ^{*c*}Yields include aldehydes and acetals. ^{*d*}The yield of methyl benzoate. ^{*e*}Yields include aldehydes and acetals. ^{*f*}The yield of ethyl benzoate. The "n.d." means "not detected".

CI	1-CL _{0.5} CH ₃ CN (2 mL) 30% H ₂ O ₂ (2.5 eq), 4 h	CI 6a	+ $7a$	
		Yield	ls (%) ^b	
Entry	Temperature (°C)	6a	7a	8a
1	70	84	5	6
2	80	88	5	7
3	90	85	4	6

Table S13 Screening the temperature for alkene compounds to aldehydes ^a

^{*a*}Reaction conditions: 5a (0.2 mmol), **1-CL_{0.5}** (0.05 mol%), 30% H_2O_2 , acetonitrile (2 mL), 4 h. ^{*b*}Yields are determined by GC-MS using mesitylene as an internal standard.

Table S14 Screening the amount of catalyst for alkene compounds to aldehydes^a

CI 5a	1-CL _{0.5} CH ₃ CN (2 mL) 30% H ₂ O ₂ (2.5 eq), 80°C 4 h	→ CI 6a	+ CI 7a	+ OH Cl 8a
		Yiel	ds (%) ^b	
Entry	Amount of catalyst (mol%)	6a	7a	8a
1	0.025	74	8	4
2	0.050	88	5	7
3	0.100	75	8	10

^{*a*}Reaction conditions: 5a (0.6 mmol), 30% H₂O₂ (2.5 eq), 80 °C, acetonitrile (2 mL), 4 h. ^{*b*} Yields are determined by GC-MS using mesitylene as an internal standard.

CI 5a	1-CL_{0.5} CH ₃ CN (2 mL) 30% H ₂ O ₂ , 80°C 4 h	CI 6a	+	O OH 8a
		Yiel	ds (%) ^b	
Entry	Oxdant/substrate (eq)	6a	7a	8a
1	2.0	71	7	2
2	2.2	75	7	5
3	2.3	86	5	4
4	2.4	86	2	7
5	2.5	88	5	7
6	2.6	85	5	9
7	2.8	71	6	23
8	3.0	65	6	28

Table S15 Screening the amount of $\mathrm{H_2O_2}$ for alkene compounds to aldehydes a

^{*a*}Reaction conditions: 5a (0.2 mmol), **1-CL_{0.5}** (0.05 mol%), 30% H₂O₂, 80 °C, acetonitrile (2 mL), 4 h. ^{*b*}Yields are determined by GC-MS using mesitylene as an internal standard.

Table S16 Screening time for alken	ne compounds to aldehydes ^a
------------------------------------	--

CI 5a	1-CL _{0.5} CH ₃ CN (2 mL) 30% H ₂ O ₂ (2.5 eq), 80°C	6a +	o Ta +	о Он 8а
		Yield	s (%) ^b	
Entry	Time (h)	6a	7a	8a
1	2.0	76	5	n.d.
2	3.0	84	6	n.d.
3	3.5	82	5	4
4	4.0	88	5	7
5	4.5	85	5	9

6 5.0 80 6 11	
---------------	--

^{*a*}Reaction conditions: 5a (0.2 mmol), **1-CL**_{0.5} (0.05 mol%), 30% H₂O₂ (2.5 eq), 80 °C, acetonitrile (2 mL). ^{*b*}Yields were determined by GC-MS using mesitylene as an internal standard. The "n.d." means "not detected".

Table S17 catalytic oxygenation of 5a using various catalysts and acetonitrile as

		Yields	(%) ^b	
Entry	Catalyst	6a	7a	8a
1	1-CL _{0.5}	88	5	7
2^c		25	5	n.d.
3^d	$Na_7[MnV_{13}]$ ·18H ₂ O	51	2	n.d.
4 ^{<i>e</i>}	$K_5 PW_{10}V_2O_{40}$	24	10	n.d.
5 ^f	Ce(NO ₃) ₃ ·6H ₂ O	28	3	n.d.
6 ^g	α-cyclodextrin	15	4	n.d.
7	$Na_{7}[MnV_{13}]$ ·18H ₂ O, K ₅ PW ₁₀ V ₂ O ₄₀	26	2	n.d.
8	Na ₇ [MnV ₁₃]·18H ₂ O, Ce(NO ₃) ₃ ·6H ₂ O	63	10	14
9	$Na_7[MnV_{13}]$ ·18H ₂ O, α -cyclodextrin	34	5	n.d.
10	K ₅ PW ₁₀ V ₂ O ₄₀ , Ce(NO ₃) ₃ ·6H ₂ O	25	8	n.d.
11	Na ₇ [MnV ₁₃]·18H ₂ O, K ₅ PW ₁₀ V ₂ O ₄₀ , Ce(NO ₃) ₃ . 6H ₂ O	68	21	2
12	$K_5PW_{10}V_2O_{40}$, α -cyclodextrin	27	12	n.d.
13	Ce(NO ₃) ₃ ·6H ₂ O, α-cyclodextrin	6	3	n.d.
14	$Na_7[MnV_{13}]$ ·18H ₂ O, K ₅ PW ₁₀ V ₂ O ₄₀ , α -cyclodextrin	38	11	n.d.
15	Na ₇ [MnV ₁₃]·18H ₂ O, Ce(NO ₃) ₃ . 6H ₂ O, α-cyclodextrin	8	4	n.d.
16	$K_5PW_{10}V_2O_{40}$, Ce(NO ₃) ₃ . 6H ₂ O, α -cyclodextrin	58	21	n.d.
17	$Na_7[MnV_{13}]$ ·18H ₂ O, K ₅ PW ₁₀ V ₂ O ₄₀ ,	68	11	5
1/	Ce(NO ₃) ₃ . 6H ₂ O, α-cyclodextrin	00	11	5

^{*a*}Reaction conditions: 5a (0.6 mmol), **1-CL**_{0.5} (0.05 mol%), 30% H₂O₂ (2.5 eq), 80 °C, acetonitrile (2 mL), 4 h. ^{*b*}Yields are determined by GC-MS using mesitylene/n-Hexadecane as an internal standard. ^{*c*}No catalyst. ^{*d*}Na₇[MnV₁₃]·18H₂O (0.05 mol%). ^{*e*}K₅PW₁₀V₂O₄₀ (0.1 mol%). ^{*f*}Ce(NO₃)₃·6H₂O (0.3 mol%). ^{*g*}α-cyclodextrin (0.1 mol%). The "n.d." means "not detected".

Figure S22 The FT-IR spectra of 1-CL_{0.5} and after styrene catalysis

Figure S23 ¹³C solid-state NMR spectrum of 1-CL_{0.5} and after styrene catalysis

Figure S24 31 P solid-state NMR spectrum of 1-CL_{0.5} and after styrene catalysis

Element	Mn	V	Ce	Р	W	C	Н	N
Calculated value (%)	0.40	5.97	6.16	0.45	26.93	22.15	3.45	4.92
Actual value (%)	0.48	6.04	6.34	0.41	27.15	22.42	3.65	4.66
After catalysis (%)	0.41	6.14	5.92	0.44	27.38	22.39	3.34	4.70
Mother liquor after catalyst filtration (%)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-

Table S18 Elemental Analysis of 1-CL_{0.5} after Catalysis

Figure S25 Hot filtration experiment using $1-CL_{0.5}$ for the catalytic oxidation of p-chlorostyrene.

16. Recycling experiments.

Fig. S26 Recycling experiments for the catalytic oxidation of 4-CHlorostyrene.

17. References

- 1. C. M. Flynn, M. T. Pope, J. Am. Chem. Soc, 1970, 92, 85.
- 2. A. P. Ginsberg (1990). Inorg. Synth. 27, 108.
- 3. Domaille P J. J. Am. Chem. Soc, 1984, 106(25):7677-7687.
- G. M. Sheldrick, SADABS. University of Gottingen, Germany, Standard Software References, 1996.
- 5. G. M. Sheldrick, Acta Crystallographica Section A: Found. Adv., 2015, 71, 3-8.
- 6. G. M. Sheldrick, Acta Crystallogr. Sect. C: Struct. Chem., 2015, 71, 3-8.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341