Electronic Supplementary Information

Modulating the electronic configuration of Co species in

MOF/MXene nanosheets derived Co-based mixed spinel oxides for

efficient oxygen evolution reaction

Chuming Xu,^{#a} Xifeng Yang,^{#a} Shuang Li,^{*a,b} Keke Li,^a Benjun Xi,^b Qing-Wen Han,^b Ya-pan Wu,^{a,b} Xue-Qian Wu,^{a,b} Ru-an Chi^b and Dong-sheng Li^{*a,b}

^aCollege of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China

^bHubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China

*Corresponding Author.

E-mail address: <u>lishmail@126.com</u>; <u>lidongsheng1@126.com</u>.

[#]These authors contributed equally to this work.

Fig. S1. The preparation process of the Co-based mixed spinel oxides.

Fig. S2. XRD pattern of Co-BDC annealed at 650°C.

Fig. S3. Nitrogen adsorption and desorption curves of the $CoTiO_x$ -T. All samples show type-IV isotherms with a very distinct hysteresis loop of typical H3. The BET surface area of the $CoTiO_x$ -650 is 12.3 m² g⁻¹, which is larger than that of $CoTiO_x$ -550 (9.5 m² g⁻¹), $CoTiO_x$ -750 (2.3 m² g⁻¹), $CoTiO_x$ -800 (2.5 m² g⁻¹), $CoTiO_x$ -900 (3.1 m² g⁻¹).

Fig. S4. (a) The selected area electron diffraction (SAED) image and (b) HRTEM image of CoTiO_x -650.

Fig. S5. The polarization curve of OER on $Ti_3C_2T_x$ annealed at 650 °C. It can be seen that the annealed product TiO_2 has almost no OER activity.

Fig. S6. Cyclic voltammetric curves of different samples.

Fig. S7. C_{dI} -normalized polarization curves for $CoTiO_x$ -T catalysts.

Fig. S8. The XRD and XPS of $CoTiO_x$ -650 after stability test.

Table S1. Comparison	of the o	overpotential	at 10	mA	cm ⁻²	of p	resent	work	and
the other OER catalyst	s in a thr	ree-electrode	syster	n					

	Overpotential			Reference		
Catalyst	10 mA cm ⁻²	Electrolyte	Support			
	(mV)					
CaT:O (50	260	1M KOH NI		This work		
C0110 _x -050	280	1М КОН	GC			
NNU-23 (Fe ₂ Ni-	365	0.1m KOH	CC	Angew. Chem. Int. Ed.,		
MOF)	565 0.111 KOIT CC			2018, 57, 9660		
Co-BDC nanosheets	371	1M KOH	GC	Nat. Energy, 2016, 1, 16184		
NiO/CoN PINWs	300	0.1M KOH	CC	ACS Nano, 2017, 11, 2275		
Ni-MOF@Fe-MOF	265	1М КОН	GC	Adv. Funct. Mater., 2018,		
powder				28, 1801554		
FeNi-BTC	270		NF	ACS Appl. Mater.		
		0.1 WI KOII	INI	Interfaces, 2016, 8, 16736		
Co-PB/Pt	300	1М КОН	GC	ACS Sustainable Chem.		
				Eng., 2017, 5, 11577		
Co(TCNO)	310	1М КОН	Co foil	Chem. Eur. J., 2018, 24,		
				2075		
TiC ₂ TX-CoBDC	410	0.1M KOH	GC	ACS Nano, 2017, 11, 5800		
Fe:2D-Co-NS	282		GC	Angew. Chem. Int. Ed.,		
		0.11WI KOIT	UC	2018, 57, 4632		
Co ₃ O ₄ -based	260		CC	Angew. Chem. Int. Ed.,		
catalysts	catalysts 200 IN F			2020, 59, 6929-6935		
	270			Applied Catalysis B:		
Co ₃ O ₄ -Ag@B		1M KOH	GC	Environmental, 2021, 298,		
				120529		
Co ₃ O ₄ /Ti ₃ C ₂	300	1М КОН	GC	Sci. Bull., 2020, 65, 460		
Ni-MOF@Fe-MOF	265	1М КОН	GC	Adv. Funct. Mater., 2018,		
powder	203			28, 1801554		
n-Co ₃ O ₄	380	1М КОН	GC	ACS Appl. Energy Mater.,		
			60	2020, 3, 5439		
Fe-Co-O nanosheets	260	1M KOH	GC	Small, 2020, 16, 2001571		
Co ₃ O ₄ /rGO	290	1М КОН	CF	Chem. Eur. J., 2017, 23,		
				4010		
Co@Co ₃ O ₄	333	1M KOH	GC	ACS Catal., 2018, 8, 7879		
Confurence	200	1М КОН	GC	Electrochim. Acta, 2021,		
	230			398, 139338		