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Fig. S1 High resolution XPS of (a) Ni 2p and (b) O 1s in the pristine Ni-HHTP and the Ni-HHP-250.
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Fig. S2 Nitrogen adsorption and desorption isotherms of the pristine Ni-HHTP sample and calcined Ni-HHTP 

samples. 

The specific surface areas of the Ni-HHTP sample, the Ni-HHTP-160 sample, the Ni-HHTP-250 sample 

and the Ni-HHTP-340 sample are 296.6 m2/g, 115.9 m2/g, 53.3 m2/g and 66.0 m2/g. Compared with the Ni-HHTP, 

specific surface areas decreased in the calcined samples. The Ni-HHTP-250 sample owned the smallest specific 

surface area. Although the adsorption of sodium ions was minimal, the small specific surface area reduced side 

reactions with the electrolyte. 1



Fig. S3 The XRD patterns of the Ni-HHTP sample, the Ni-HHTP-160 sample, the Ni-HHTP-250 sample and the Ni-

HHTP-340 sample after soaking in different electrolytes for 24 h.

Fig. S4 (a) Rate performances of the pristine Ni-HHTP sample and calcined Ni-HHTP samples at various current rates 

from 100 to 2000 mA g−1. (b) Cycling properties at 500 mA h g−1 of the Ni-HHTP-250 sample and the Ni-HHTP-340 

sample. 



Fig. S5 Cycling property at 500 mA h g−1 of the Ni-HHTP-500 sample. 

Fig. S6 CV curves, the corresponding plots of log (peak current) vs. log (scan rate) at peak1 and 2, and contribution 

ratio of capacitive- and diffusion-controlled capacities of the Ni-HHTP sample (a-c), the Ni-HHTP-160 sample (d-f) 

and the Ni-HHTP-340 sample (g-i). 



Fig. S7 (a) EIS spectra of the Ni-HHTP sample, the Ni-HHTP-160 sample and the Ni-HHTP-340 sample and equivalent 

circuit model for EIS fitting. (b) Corresponding Zre vs. ꞷ -1/2 plots in the low frequency region.

The diffusion coefficient of Na+ ions is calculated by the following equation: 2 (1) , (2)  𝜔 = 2𝜋𝑓

, (3)  , Where D represents the diffusion coefficient of the sodium ion, R is the 𝑍𝑟𝑒 = 𝑅 + 𝜎𝜔 ‒ 1/2
𝐷 =

𝑅2𝑇2

2𝐴2 𝑛4𝐹4𝐶2𝜎2

gas constant, T is the absolute temperature, A is the surface area of electrode, n is the number of electrons per 

molecule during oxidization, F is the Faraday constant, C is the concentration of sodium ion, and σ is the Warburg 

factor, σ relates to Zre through equation (2) and its value can be obtained from the slope of the lines between Zre 

and ꞷ-1/2. And then the diffusion coefficient of the sodium ion is calculated and showed in Table S1.

Table S1. D obtained from EIS spectra in Fig. S7 and Fig. 5f.

electrodes DNa
+ (cm2 s-1)

Ni-HHTP 1.95×10-12

Ni-HHTP-160 9.8×10-13

Ni-HHTP-250 1.52×10-11

Ni-HHTP-340 5.6×10-12
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