Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Cover Page for Supporting Information

Manuscript Title:

Diversified Two-Electron Reduction for Trivalent Scandium Complexes with Arene Ligands

Authors:

Miaomiao Zhu, Tianyu Li, Zhengqi Chai, Junnian Wei, Ze-Jie Lv,* and Wen-Xiong Zhang*

Affiliations:

Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Contents:

1) Experimental Details and Characterization Data	S2
2) Copies of ¹ H NMR and ¹³ C NMR Spectra	S11
3) X-ray Crystallographic Studies	S29
4) The Cyclic Voltammetry of 8 and 9	S45
5) References	S45

1) Experimental Details and Characterization Data

Unless otherwise noted, all starting materials were commercially available and were used without further purification. Solvents were purified by Mbraun SPS-800 Solvent Purification System and dried over fresh Na chips and molecular sieves in a glovebox. d^8 -THF was purchased from Cambridge Isotope Laboratory, degassed, and vacuum transferred to 4 Å molecular sieves. All reactions were operated under an argon atmosphere in a glovebox or under slightly positive dry nitrogen pressure using standard Schlenk line techniques. The argon in the glove box was constantly circulated through a copper/molecular sieves catalyst unit. The oxygen and moisture concentrations in the glovebox atmosphere were monitored by an O₂/H₂O Combi-Analyzer to ensure that both were always below 0.1 ppm.

Organometallic samples for NMR spectroscopic measurements were prepared in a glovebox using J. Young valve NMR tubes (Wilmad 528-JY). ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 MHz, 500 MHz or 600 MHz spectrometer. ¹H and ¹³C NMR spectra were reported with reference to solvent resonances of d^8 -THF at 1.73 and 25.37 ppm, respectively. Elemental analyses were performed on a Vario MICRO cube elemental analyzer. HRMS were recorded on a Bruker Apex IV FTMS mass spectrometer using ESI. Cyclic voltammetry measurement was performed on CHI660 electrochemical workstation with platinum as the working electrode and Ag/AgNO₃ (0.1 M in CH₃CN) as the reference electrode under a nitrogen atmosphere (E_{1/2} (Fc⁺/ Fc) = 0.14 V).

Compounds 1-3 were prepared following the literature procedures.^{1,2}

Synthesis of 4 and 5: In the glovebox, KC_8 (324.0 mg, 2.4 mmol) was added to a pre-cooled (-35 °C) THF (10 mL) solution of the mixture of 1 (356.9 mg, 0.5 mmol) and naphthalene (128.2 mg, 1.0 mol). The solution was stirred at room temperature for 1 h, then

filtered by filter funnel with fritted disc. After that, the solvents were removed under reduced pressure and a large amount of purple solid was obtained. The solid was washed with hexane (5 mL x 3) thrice and dried under vacuum. The final purple powder was pure enough for NMR experiment without further purification. Yield: 85% (415.4 mg, 0.85 mmol). ¹H NMR of **4** (400 MHz, d^8 -THF) δ 0.92 (d, J = 6.3 Hz, 6H, (CH_3)₂CH), 1.11 (d, J = 6.4 Hz, 6H, (CH_3)₂CH), 1.70 (s, 3H, CCH₃), 1.83 (s, 15H, C₅Me₅), 2.58-2.60 (m, 2H, naph), 3.44-3.51 (m, 2H, (CH₃)₂CH), 4.77-4.80 (m, 2H, naph), 5.68-5.71 (m, 2H, naph), 6.02-6.04 (m, 2H, naph). ¹³C NMR of **4** (126

MHz, d^{8} -THF) δ 12.45 (CCH₃), 12.63 (C₅*Me*₅), 25.91 ((CH₃)₂CH), 26.95 ((CH₃)₂CH), 48.09 ((CH₃)₂CH), 70.06 (ScC), 111.87 (naph), 114.78 (naph), 115.22 (C₅Me₅), 119.79 (naph), 150.68 (naph), 164.21 (NCN). After recrystallization in the mixed solvents of Et₂O/hexane (4:1) at -35 °C for 1 day, the single crystals of **5**·**0.5Et₂O** could be obtained. Yield: 73% (437.9 mg, 0.73 mmol). ¹H NMR of **5**·**0.5Et₂O** (400 MHz, d^{8} -THF) δ 0.92 (d, J = 6.3 Hz, 6H, (*CH*₃)₂CH), 1.10-1.13 (m, 15H, CH₃ of Et₂O, (*CH*₃)₂CH), 1.70 (s, 3H, C*CH*₃), 1.83 (s, 15H, C₅*Me*₅), 2.58-2.60 (m, 2H, naph), 3.39 (d, J = 7.0 Hz, 6H, CH₂ of Et₂O), 3.44-3.52 (m, 2H, (CH₃)₂CH), 4.77-4.79 (m, 2H, naph), 5.68-5.70 (m, 2H, naph), 6.01-6.03 (m, 2H, naph). Anal. Calcd for C₃₄H₅₅KN₂O_{1.5}Sc of **5**·**0.5Et₂O**: C, 68.08; H, 9.24; N, 4.67. Found: C, 68.30; H, 8.62; N, 5.30.

Synthesis of 6 and 7: This complex was prepared from the reaction of 3 (486.9 mg, 0.5 mmol), KC₈ (324.0 mg, 2.4 mmol) and naphthalene (128.2 mg, 1.0 mol) in THF (10 mL) by an analogous procedure as the

synthesis of **4**. The final orange powder was pure enough for NMR experiment without further purification. Yield: 90% (556.8 mg, 0.90 mmol). ¹H NMR of **6** (400 MHz, d^{8} -THF) δ 0.91 (d, J = 6.3 Hz, 6H, $(CH_{3})_{2}$ CH), 1.09 (d, J = 6.2 Hz, 6H, $(CH_{3})_{2}$ CH), 1.71 (s, 3H, CCH₃), 1.90 (s, 15H, C₅*Me*₅), 2.43-2.45 (m, 2H, naph), 3.44-3.49 (m, 2H, (CH₃)₂CH), 4.64-4.66 (m, 2H, naph), 5.56-5.58 (m, 2H, naph), 5.97-6.00 (m, 2H, naph). ¹³C NMR of **6** (126 MHz, d^{8} -THF) δ 12.24 (C₅*Me*₅), 12.32 (CCH₃), 25.97 ((CH₃)₂CH), 26.93 ((CH₃)₂CH), 48.10 ((CH₃)₂CH), 68.58 (LuC), 111.44 (naph), 114.37 (C₅Me₅), 114.69 (naph), 119.42 (naph), 149.33 (naph), 166.99 (NCN). After recrystallization in the mixed solvents of Et₂O/hexane (4:1) at -35 °C for 1 day, the single crystals of **7** could be obtained. Yield: 70% (484.9 mg, 0.70 mmol). ¹H NMR of **7** (400 MHz, d^{8} -THF) δ 0.91 (d, J = 6.3 Hz, 6H, (CH₃)₂CH), 1.08-1.13 (m, 12H, CH₃ of Et₂O, (CH₃)₂CH), 1.70 (s, 3H, CCH₃), 1.90 (s, 15H, C₅Me₅), 2.43-2.45 (m, 2H, naph), 3.39 (d, J = 7.0 Hz, 4H, CH₂ of Et₂O), 3.41-3.50 (m, 2H, (CH₃)₂CH), 4.64-4.66 (m, 2H, naph), 5.56-5.58 (m, 2H, naph). Anal. Calcd for C₃₂H₅₀KLuN₂O of **7**: C, 55.48; H, 7.27; N, 4.04. Found: C, 54.92; H, 6.90; N, 4.47.

Synthesis of 8: In the glovebox, KC₈ (324.0 mg, 2.4 mmol) was added to a pre-cooled (-35 °C) THF (10 mL) solution of the mixture of **1** (356.9 mg, 0.5 mmol) and naphthalene (128.2 mg, 1.0 mol). The solution was stirred at room temperature for 1 h, then filtered by filter funnel with fritted disc. [2.2.2]cryptand (376.5 mg, 1.0 mmol) was added to filtrate and the mixture was stirred at room temperature for 1 h. After that, the solvents were removed under reduced pressure and a large amount of purple solid was obtained. The solid was washed with Et₂O (5 mL x 3) thrice and dried under vacuum. The final purple powder was pure enough for NMR experiment without further purification. Yield: 84% (726.7 mg, 0.84 mmol). ¹H NMR of **8** (500 MHz, d^8 -THF) δ 0.94 (d, J = 6.3 Hz, 6H, $(CH_3)_2$ CH), 1.10 (d, J = 6.2 Hz, 6H, $(CH_3)_2$ CH), 1.68 (s, 3H, CCH₃), 1.82 (s, 15H, C₅*Me₅*), 2.50-2.52 (m, 12H, NCH₂CH₂O), 2.58-2.61 (m, 2H, naph), 3.43-3.46 (m, 2H, (CH₃)₂CH), 3.48-3.50 (m, 12H, NCH₂CH₂O), 3.54 (s, 12H, OCH₂CH₂O), 4.70-4.72 (m, 2H, naph), 5.61-5.63 (m, 2H, naph), 5.90-5.92 (m, 2H, naph). ¹³C NMR of **8** (126 MHz, d^8 -THF) δ 12.33 (CCH₃), 12.81 (C₅*Me₅*), 2.599 ((CH₃)₂CH), 27.10 ((CH₃)₂CH), 48.18 ((CH₃)₂CH), 54.99 (NCH₂CH₂O), 68.10 (ScC), 68.69 (NCH₂CH₂O), 71.49 (OCH₂CH₂O), 112.52 (naph), 114.23 (C₅Me₅), 115.30 (naph), 118.64 (naph), 150.77 (naph), 163.75 (NCN). After recrystallization by slow diffusion of hexane into the THF solution of **8** for 3 days, the single crystals **8·0.5THF** suitable for X-ray analysis could be obtained. Anal. Calcd for C4₈H₈₀KN₄O_{6.5}Sc of **8·0.5THF**: C, 63.97; H, 8.95; N, 6.22. Found: C, 64.08; H, 9.33; N, 6.20.

K(crypt) Synthesis of 9: This complex was prepared from the reaction of 3 (486.9 mg, 0.5 mmol), KC₈ (324.0 mg, 2.4 mmol) and naphthalene (128.2 mg, 1.0 mol) in THF (10 mL) by an analogous procedure as the synthesis of 8. The final orange powder was pure enough for NMR experiment without further purification. Yield: 75% (746.4 mg, 0.75)

mmol). ¹H NMR of **9** (500 MHz, d^{8} -THF) δ 0.94 (d, J = 6.3 Hz, 6H, $(CH_{3})_{2}$ CH), 1.08 (d, J = 6.2 Hz, 6H, $(CH_{3})_{2}$ CH), 1.67 (s, 3H, CCH₃), 1.88 (s, 15H, C₅*Me*₅), 2.46-2.47 (m, 2H, naph), 2.51-2.53 (m, 12H, NCH₂CH₂O), 3.40-3.45 (m, 2H, (CH₃)₂CH), 3.49-3.51 (m, 12H, NCH₂CH₂O), 3.55 (s, 12H, OCH₂CH₂O), 4.56 (br, 2H, naph), 5.51 (br, 2H, naph), 5.86-5.88 (m, 2H, naph). ¹³C NMR of **9** (126 MHz, d^{8} -THF) δ 12.21 (CCH₃), 12.41 (C₅*Me*₅), 26.06 ((CH₃)₂CH), 27.08 ((CH₃)₂CH), 48.17 ((CH₃)₂CH), 55.01 (NCH₂CH₂O), 68.58 (LuC), 68.71 (NCH₂CH₂O), 71.50 (OCH₂CH₂O), 111.86 (naph), 113.55 (C₅Me₅), 115.27 (naph), 118.20 (naph), 149.43 (naph), 166.33 (NCN). After recrystallization by slow diffusion of hexane into the THF solution of **9** for 3 days, the single crystals **9**·1.5THF suitable for X-ray analysis could be obtained. Anal. Calcd for C₄₈H₈₀KLuN₄O_{6.5} of **9**: C, 55.91; H, 7.82; N, 5.43. Found: C, 55.46; H, 7.95; N, 5.73. The THF in **9**·1.5THF might be removed under reduced pressure to afford **9**.

Synthesis of 10: This complex was prepared from the reaction of 1 (356.9 mg, 0.5 mmol), KC₈ (324.0 mg, 2.4 mmol) and 1,4dimethylnaphthalene (156.2 mg, 1.0 mol) in THF (10 mL) by an analogous procedure as the synthesis of **8**. The final dark red powder was pure enough for NMR experiment without further purification. Yield: 85% (759.3 mg, 0.85 mmol). After

recrystallization by slow diffusion of hexane into the THF solution of **10** for 3 days, the single crystals **10**•**0.5THF** suitable for X-ray analysis could be obtained. ¹H NMR of **10** (600 MHz, d^{8} -THF) δ 0.96 (d, J = 5.9 Hz, 6H, $(CH_{3})_{2}$ CH), 1.13 (d, J = 6.3 Hz, 6H, $(CH_{3})_{2}$ CH), 1.71 (s, 3H, CCH₃), 1.78 (s, 15H, C₅Me₅), 1.81 (br, 6H, ArCH₃), 2.47-2.49 (m, 12H, NCH₂CH₂O), 2.66-267 (m, 2H, naph), 3.46-3.48 (m, 12H, NCH₂CH₂O), 3.49-3.52 (m, 14H, (CH₃)₂CH, OCH₂CH₂O), 4.78-4.80 (br, 2H, naph), 5.83 (br, 2H, naph). ¹³C NMR of **10** (151 MHz, d^{8} -THF) δ 12.41 (CCH₃), 12.73 (C₅Me₅), 20.62 (ArCH₃), 26.20 ((CH₃)₂CH), 27.00 ((CH₃)₂CH), 48.14 ((CH₃)₂CH), 54.95 (NCH₂CH₂O), 68.07 (LuC), 68.68 (NCH₂CH₂O), 71.48 (OCH₂CH₂O), 112.96 (naph), 114.39 (C₅Me₅), 118.58 (naph), 120.82 (naph), 147.49 (naph), 163.41 (NCN). **10** was too sensitive to give satisfactory elemental analysis.

Synthesis of 11: In the glovebox, KC₈ (324.0 mg, 2.4 mmol) was added to a pre-cooled (-35 °C) THF (10 mL) solution of the mixture of 1 (356.9 mg, 0.5 mmol) and anthracene (178.2 mg, 1.0 mol). The solution was stirred at room temperature for 1 h, then filtered by filter funnel with fritted disc. [2.2.2]cryptand (376.5 mg, 1.0 mmol) was added to filtrate and the

mixture was stirred at room temperature for 1 h. After that, the solvents were removed under reduced pressure and a large amount of dark red solid was obtained. The solid was washed with Et_2O (5 mL x 3) thrice and dried under vacuum. The final dark red powder was pure enough for NMR experiment without further purification. Yield: 74% (677.3 mg, 0.74 mmol). In d^8 -THF solution, **11** and **11**' are in a dynamic equilibrium. **11**' is the main isomer at low temperature while a rapid fluxional process between **11** and **11**' was observed at elevated

temperatures. ¹H NMR of **11** (500 MHz, d^8 -THF, -40 °C) δ 0.88 (d, J = 6.1 Hz, 6H, (*CH*₃)₂CH), 1.16 (J = 6.4 Hz, 6H, (*CH*₃)₂CH), 1.23 (s, 3H, *CCH*₃), 1.76 (s, 15H, C₅*Me*₅), 2.38 (br, 12H, N*CH*₂CH₂O), 2.98 (s, 2H, anth), 3.01-3.06 (m, 2H, (CH₃)₂*CH*), 3.39 (m, 12H, N*CH*₂*CH*₂O), 3.43 (s, 12H, O*CH*₂*CH*₂O), 5.98 (br, 2H, anth), 6.09 (br, 2H, anth), 6.18 (br, 2H, anth), 6.28 (br, 2H, anth). ¹H NMR of **11** (400 MHz, d^8 -THF, 25 °C) δ 0.95 (d, J = 5.6 Hz, 6H, (*CH*₃)₂CH), 1.12-1.14 (m, 6H, (*CH*₃)₂CH), 1.37 (br, 3H, *CCH*₃), 1.79 (s, 15H, C₅*Me*₅), 2.39-2.42 (m, 12H, N*CH*₂CH₂O), 3.10-3.24 (m, 2H, (CH₃)₂*CH*), 3.26-3.35 (m, 2H, anth), 3.38-3.41 (m, 12H, N*CH*₂*CH*₂O), 3.45 (s, 12H, O*CH*₂*CH*₂O), 5.59-6.41 (br, 8H, anth). ¹³C NMR of **11** (126 MHz, d^8 -THF, 25 °C) δ 12.54 (*CCH*₃), 12.63 (C₅*Me*₅), 15.86 (*CH*₃ of Et₂O), 25.98 ((*CH*₃)₂CH), 26.77 ((*CH*₃)₂CH), 47.29 ((*CH*₃)₂*CH*), 55.07 (*NCH*₂*CH*₂O), 66.48 (*CH*₂ of Et₂O), 68.10 (Lu*C*), 68.82 (*NCH*₂*CH*₂O), 71.58 (*OCH*₂*CH*₂O), 108.82 (anth), 114.41 (anth), 116.20 (*C*₅*Me*₅), 120.63 (anth), 126.27 (anth), 126.57 (anth), 126.89 (anth), 128.15 (anth), 137.89 (anth), 146.03 (anth), 164.80 (*NCN*). After recrystallization by slow diffusion of hexane into the THF solution of **11** for 3 days, the single crystals **11** suitable for X-ray analysis could be obtained. Anal. Calcd for C₅₀H₇₈KN₄O₆Sc of **11**: C, 65.62; H, 8.59; N, 6.12. Found: C, 65.22; H, 8.47; N, 6.09.

Synthesis of 12: This complex was prepared from the reaction of 2 (399.0 mg, 0.5 mmol), KC₈ (324.0 mg, 2.4 mmol), anthracene (178.2 mg, 1.0 mol) and [2.2.2]cryptand (376.5 mg, 1.0 mmol) in THF (10 mL) by an analogous procedure as the synthesis of 11. The final purple oil was pure enough for NMR experiment without further purification. Yield: 53% (507.4 mg, 0.53 mmol). ¹H NMR

of **12** (600 MHz, d^{8} -THF) δ 0.90-0.95 (m, 9H, (*CH*₃)₂CH, *CH*₃CH₂CH₂CH₂), 1.12 (d, *J* = 6.1 Hz, 6H, (*CH*₃)₂CH), 1.29-1.44 (br, 4H, CH₃*CH*₂*CH*₂CH₂), 1.88 (s, 15H, C₅*Me*₅), 2.03-2.10 (br, 2H, CH₃CH₂CH₂CH₂), 2.44 (m, 12H, N*CH*₂CH₂O), 2.76 (br, 2H, anth), 3.43 (m, 12H, NCH₂*CH*₂O), 3.47-3.53 (m, 14H, O*CH*₂*CH*₂O, (CH₃)₂*CH*), 4.64 (br, 2H, anth), 5.48 (br, 2H, anth), 6.25-6.27 (br, 2H, anth), 6.54-6.55 (br, 2H, anth). ¹³C NMR of **12** (151 MHz, d^{8} -THF) δ 12.98 (C₅*Me*₅), 14.39 (*C*H₃CH₂CH₂CH₂), 24.63 (CH₃*C*H₂CH₂CH₂), 25.82 ((CH₃)₂*C*H), 25.96 ((CH₃)₂*C*H), 28.18 (*C*H₃CH₂*C*H₂CH₂), 30.64 (*C*H₃CH₂CH₂CH₂), 47.51 ((CH₃)₂*C*H), 55.31 (*NC*H₂CH₂O), 69.04 (*NC*H₂*C*H₂O), 71.80 (*OC*H₂*C*H₂O), 73.98 (Sc*C*), 107.00 (anth), 115.65 (*C*₅Me₅), 118.93 (anth), 122.74 (anth), 126.20 (anth), 129.07 (anth), 129.84 (anth), 168.36 (*NC*N). **12** was too sensitive to give satisfactory elemental analysis.

Synthesis of 13: This complex was prepared from the reaction of 2 (399.0 mg, 0.5 mmol), KC₈ (324.0 mg, 2.4 mmol), anthracene (178.2 mg, 1.0 mol) and 18c6 (264.3 mg, 1.0 mmol) in THF (10 mL) by an analogous procedure as the synthesis of 11. The final purple oil was pure enough for NMR experiment without further purification. Yield: 68% (574.7 mg, 0.68 mmol). The crystals of

13•**THF** were obtained by placing the Et₂O solution at -35 °C for 3 days. ¹H NMR of **13** (500 MHz, d^8 -THF) δ 0.90-0.97 (m, 9H, (*CH*₃)₂CH, *CH*₃CH₂CH₂CH₂), 1.12 (d, *J* = 6.2 Hz, 6H, (*CH*₃)₂CH), 1.29-1.33 (br, 4H, CH₃*CH*₂*CH*₂CH₂), 1.88 (s, 15H, C₅*Me*₅), 2.04-2.06 (br, 2H, CH₃CH₂CH₂CH₂), 2.77 (br, 2H, anth), 3.38-3.48 (m, 26H, O*CH*₂*CH*₂O, (CH₃)₂*CH*), 4.65 (br, 2H, anth), 5.45 (br, 2H, anth), 6.27 (br, 2H, anth), 6.52 (br, 2H, anth). ¹³C NMR of **13** (126 MHz, d^8 -THF) δ 12.93 (C₅*Me*₅), 14.40 (*C*H₃CH₂CH₂CH₂), 24.65 (CH₃*C*H₂CH₂CH₂), 25.98 ((CH₃)₂*C*H), 26.31 ((CH₃)₂*C*H), 28.17 (*C*H₃CH₂CH₂CH₂), 30.52 (*C*H₃CH₂CH₂CH₂), 47.50 ((CH₃)₂*C*H), 71.62 (O*C*H₂*C*H₂O), 74.03 (Sc*C*), 115.89 (*C*₅Me₅), 119.19 (anth), 126.20 (anth), 126.88 (anth), 128.15 (anth), 129.07 (anth), 129.84 (anth), 167.10 (N*C*N). **13** was too sensitive to give satisfactory elemental analysis.

Synthesis of 14: In the glovebox, cyclooctatetraene (23.1 μ L, 0.2 mmol) was added to a pre-cooled (-35 °C) THF (5 mL) solution of 8 (173.1 mg, 0.2 mmol) and the reaction mixture gradually turned to yellow. The solution was stirred at room temperature for 1 h. After that, the solvents were removed under reduced pressure to afford

yellow solid. The solid was washed with Et₂O (2 mL x 3) thrice and dried under vacuum affording yellow powder. This powder was pure enough for NMR experiment without further purification. Yield: 87% (146.4 mg, 0.17 mmol). Slowly diffusing hexane into the THF solution of **14** for 3 days afforded the yellow single crystals of **14**. ¹H NMR of **14** (600 MHz, d^{8} -THF) δ 0.82 (d, *J* = 6.1 Hz, 6H, (*CH*₃)₂CH), 1.30 (d, *J* = 6.4 Hz, 6H, (*CH*₃)₂CH), 1.71 (s, 3H, C*CH*₃), 1.92 (s, 15H, C₅*Me*₅), 2.31-2.32 (m, 12H, N*CH*₂CH₂O), 3.27-3.29 (m, 12H, N*CH*₂*CH*₂O), 3.33 (s, 12H, O*CH*₂*CH*₂O), 3.52-3.55 (m, 2H, (CH₃)₂*CH*), 5.38 (s, 8H, COT). ¹³C NMR of **14** (126 MHz, d^{8} -THF) δ 12.59 (C*C*H₃), 12.99 (C₅*Me*₅), 26.67 ((CH₃)₂CH), 27.17 ((CH₃)₂CH), 48.07 ((CH₃)₂*C*H), 54.91 (N*C*H₂CH₂O), 68.57 (N*C*H₂*C*H₂O), 71.30 (O*C*H₂*C*H₂O), 97.68 (COT), 115.03 (*C*₅*Me*₅), 165.09 (N*C*N). Anal. Calcd for C₄₄H₇₆KN₄O₆Sc of **14**: C, 62.83; H, 9.11; N, 6.66. Found: C, 62.79; H, 9.25; N, 6.68.

Synthesis of 15: In the glovebox, dibenzo[a,e]cyclooctene (40.9 mg, 0.2 mmol) was added to THF (5 mL) solution of 8 (173.1 mg, 0.2 mmol) and the reaction mixture was heated to 50 °C for 6 h. After that, the solvents were removed under reduced pressure to afford dark red solid. The solid was washed with Et_2O (2 mL x 3) thrice and dried under vacuum affording dark red powder. This powder was pure

enough for NMR experiment without further purification. Yield: 81% (152.5 mg, 0.16 mmol). ¹H NMR of **15** (500 MHz, d^8 -THF) δ 0.02 (d, J = 6.2 Hz, 6H, $(CH_3)_2$ CH), 0.50 (d, J = 6.1 Hz, 6H, $(CH_3)_2$ CH), 1.72 (s, 3H, CCH₃), 2.03 (s, 15H, C₅*Me*₅), 2.06-2.08 (m, 12H, NCH₂CH₂O), 2.69-2.74 (m, 2H, (CH₃)₂CH), 3.03-3.04 (m, 12H, NCH₂CH₂O), 3.10 (s, 12H, OCH₂CH₂O), 6.22-6.24 (m, 8H, Ar), 7.40-7.42 (m, 4H, Ar). ¹³C NMR of **15** (126 MHz, d^8 -THF) δ 12.67 (C₅*Me*₅), 14.71(CCH₃), 25.98 ((CH₃)₂CH), 26.02 ((CH₃)₂CH), 47.93 ((CH₃)₂CH), 54.86 (NCH₂CH₂O), 68.52 (NCH₂CH₂O), 71.24 (OCH₂CH₂O), 117.69 (*C*₅*Me*₅), 126.21 (dibenzo-COT), 127.69 (dibenzo-COT), 129.08 (dibenzo-COT), 129.84 (dibenzo-COT), 173.17 (NCN). Slowly diffusing hexane into the THF solution of **15** for 3 days afforded the dark red single crystals of **15·Et₂O**. Anal. Calcd for C₅₆H₉₀KN₄O₇Sc of **15·Et₂O**: C, 66.24; H, 8.93; N, 5.52. Found: C, 65.98; H, 8.65; N, 5.74.

Synthesis of 16: In the glovebox, Se (63.2 mg, 0.8 mmol) was added to a pre-cooled (-35 °C) THF (5 mL) solution of 8 (173.1 mg, 0.2 mmol) and the reaction mixture gradually turned to red. The solution was stirred at room temperature for 1 h. After that, the solvents were removed under reduced pressure to afford red solid.

The solid was washed with Et₂O (2 mL x 3) thrice and dried under vacuum affording red powder. This powder was pure enough for NMR experiment without further purification. Yield: 78% (151.9 mg, 0.16 mmol). Slowly diffusing hexane into the THF solution of **16** for 3 days afforded the red single crystals of **16**. ¹H NMR of **16** (600 MHz, d^{8} -THF) δ 1.06 (d, J = 6.3 Hz, 6H, (*CH*₃)₂CH), 1.33 (d, J = 6.5 Hz, 6H, (*CH*₃)₂CH), 1.84 (s, 3H, C*CH*₃), 2.04 (s, 15H, C₅*Me*₅), 2.60-2.62 (m, 12H, N*CH*₂CH₂O), 3.56-3.57 (m, 2H, (CH₃)₂*CH*), 3.59-3.61 (m, 12H, N*CH*₂*CH*₂O), 3.65 (s, 12H, O*CH*₂*CH*₂O). ¹³C NMR of **16** (151 MHz, d^{8} -THF) δ 12.19 (C*CH*₃), 14.17 (C₅*Me*₅), 25.82 ((*C*H₃)₂CH), 25.95 ((*C*H₃)₂CH), 49.10 ((*C*H₃)₂CH), 55.16 (N*C*H₂CH₂O), 68.82 (N*C*H₂*C*H₂O), 71.64 (O*C*H₂*C*H₂O), 117.54 (*C*₅Me₅), 171.49 (N*C*N). Anal. Calcd for C₄₀H₇₆KN₄O₇ScSe₃ of **16**•**THF**: C, 45.93; H, 7.32; N, 5.36. Found: C, 45.45; H, 7.39; N, 5.47.

Synthesis of 17: In the glovebox, benzophenone (80.2 mg, 0.2 mmol) was added to a pre-cooled (-35 °C) THF (5 mL) solution of 8 (173.1 mg, 0.2 mmol) and the reaction mixture gradually turned to colorless. The solution was stirred at room temperature for 1 h. After that, the solvents were removed under reduced pressure to

afford colorless solid. The solid was washed with Et₂O (2 mL x 3) thrice and dried under vacuum affording white powder. Yield: 75% (165.2 mg, 0.15 mmol). ¹H NMR of **17** (500 MHz, d^{8} -THF) δ 0.94 (d, J = 6.1 Hz, 6H, (CH_{3})₂CH), 1.18 (d, J = 6.3 Hz, 6H, (CH_{3})₂CH), 1.67 (s, 3H, C CH_{3}), 1.93 (s, 15H, C₅ Me_{5}), 2.50-2.52 (m, 12H, N CH_{2} CH₂O), 2.82-2.87 (m, 2H, (CH₃)₂CH), 3.48-3.50 (m, 12H, NCH₂ CH_{2} O), 3.53 (s, 12H, O $CH_{2}CH_{2}$ O), 6.58-6.67(m, 6H, Ph), 6.80-6.84 (m, 6H, Ph), 7.48-7.50 (m, 8H, Ph). ¹³C NMR of **17** (126 MHz, d^{8} -THF) δ 13.33 (C₅ Me_{5}), 13.55 (CCH₃), 26.44 ((CH₃)₂CH), 26.58 ((CH₃)₂CH), 47.71 ((CH₃)₂CH), 54.97 (NCH₂CH₂O), 68.39 (Sc-C), 68.68 (NCH₂ CH_{2} O), 71.52 (OCH₂ CH_{2} O), 114.04 (C_{5} Me₅), 125.83 (Ph), 126.67 (Ph), 128.76 (Ph), 131.78 (Ph), 168.64 (NCN). Slowly diffusing hexane into the THF solution of **17** for 3 days afforded the colorless crystals of **17·2THF**. Anal. Calcd for C₇₀H₁₀₄KN₄O₁₀Sc of **17·2THF**: C, 67.50; H, 8.42; N, 4.50. Found: C, 67.13; H, 8.28; N, 4.50.

Synthesis of 18: In the glovebox, 1,4-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene (75.3 mg, 0.2 mmol) was added to a pre-cooled (-35 °C) THF (5 mL) solution of 8 (173.1 mg, 0.2 mmol) and the reaction mixture gradually turned to yellow. The solution was

stirred at room temperature for 1 h. After that, the solvents were removed under reduced pressure to afford yellow solid. The solid was washed with Et₂O (2 mL x 3) thrice and dried under vacuum affording yellow powder. This powder was pure enough for NMR experiment without further purification. Yield: 53% (125.7 mg, 0.11 mmol). Slowly diffusing hexane into the THF solution of **18** for 3 days afforded the colorless crystals of **18**. ¹H NMR of **18** (500 MHz, d^8 -THF) δ 0.67 (d, J = 6.4 Hz, 12H, $(CH_3)_2$ CH), 0.82 (s, 3H, CCH_3), 1.14 (d, J = 6.8 Hz, 24H, $(CH_3)_2$ CH), 1.29-1.42 (m, 6H, OCH₂CH₂CH₂CH₂O), 3.17-3.22 (m, 2H, (CH₃)₂CH), 3.50-3.52 (m, 12H, NCH₂CH₂O), 3.55 (s, 12H, OCH₂CH₂O), 3.80 (t, J = 7.1 Hz, 2H OCH₂CH₂CH₂CH₂), 4.04-4.09 (m, 4H, (CH₃)₂CH), 5.15 (s, 2H, N-CH=CH-N), 6.56 (t, J = 7.5 Hz, 2H, Ar), 6.78 (d, J = 7.5 Hz, 4H, Ar). ¹³C NMR of **18** (126 MHz, d^8 -THF) δ 10.18 (C₅Me₅), 10.70 (C₅Me₅), 11.29 (C₅Me₅), 21.59 (OCH₂CH₂CH₂CH₂), 23.21 (CCH₃), 25.82 ((CH₃)₂CH),

26.14 ((CH_3)₂CH), 28.11 ((CH_3)₂CH), 37.28 (OCH₂CH₂CH₂CH₂CH₂), 38.62 (OCH₂CH₂CH₂CH₂CH₂), 48.15 ((CH_3)₂CH), 54.95 (NCH₂CH₂O), 57.07 ((CH_3)₂CH), 68.10 (C_5 Me₅), 68.64, (NCH₂CH₂O), 69.20 (OCH₂CH₂CH₂CH₂), 71.49 (OCH₂CH₂O), 117.73 (N-CH=CH-N), 119.27 (Ar), 122.61 (Ar), 133.94 (C_5 Me₅), 141.33 (C_5 Me₅), 144.91 (Ar), 157.31 (Ar), 171.18 (NCN). Anal. Calcd for C₆₆H₁₁₂KN₆O₇Sc of **18**: C, 66.86; H, 9.52; N, 7.09. Found: C, 66.94; H, 9.44; N, 7.12.

Synthesis of 19: This complex was prepared from the reaction of 1,4-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene (75.3 mg, 0.2 mmol) and **9** (199.1 mg, 0.2 mmol) in THF (5 mL) by an analogous procedure as the synthesis of **18**. The final yellow powder was pure enough for NMR experiment without further

purification. Yield: 65% (161.7 mg, 0.13 mmol). Slowly diffusing hexane into the THF solution of **19** for 3 days afforded the crystals of **19**. ¹H NMR of **19** (500 MHz, d^{8} -THF) δ 0.98-1.25 (m, 36H, (*CH*₃)₂CH), 1.78 (s, 15H, C₅*Me*₅), 1.83 (s, 3H, C*CH*₃), 2.50-2.51 (m, 12H, N*CH*₂CH₂O), 3.48-3.50 (m, 12H, N*CH*₂*CH*₂O), 3.53-3.55 (m, 14H, O*CH*₂*CH*₂O, (CH₃)₂*CH*), 3.62-3.67 (br, 4H, (CH₃)₂*CH*), 4.94 (s, 2H, N-*CH*=*CH*-N), 6.52 (t, *J* = 7.5 Hz, 2H, Ar), 6.77 (d, *J* = 7.5 Hz, 4H, Ar). ¹³C NMR of **19** (126 MHz, d^{8} -THF) δ 12.82 (C₅*Me*₅), 16.78 (C*C*H₃), 25.98 ((*C*H₃)₂CH), 28.35 ((*C*H₃)₂CH), 48.11 ((CH₃)₂CH), 54.93 (N*C*H₂CH₂O), 68.10 ((CH₃)₂CH), 68.63 (NCH₂CH₂O), 71.47 (O*C*H₂CH₂O), 114.37 (*C*₅Me₅), 118.79 (N-*C*H=*C*H-N), 120.69 (Ar), 122.41 (Ar), 145.21 (Ar), 157.51 (Ar), 169.51 (N*C*N). **19** was too sensitive to give satisfactory elemental analysis.

Synthesis of 20: This complex was prepared from the reaction of 4-tert-butylphenyl isothiocyanate (84.2 mg, 0.2 mmol) and 8 (173.1 mg, 0.2 mmol) in THF (5 mL) by an analogous procedure as the synthesis of 18. The final purple powder was pure enough for NMR experiment without further purification. Yield: 56% (125.4 mg, 0.11 mmol). Slowly diffusing hexane into the THF solution of 20 for 3 days afforded the colorless crystals of 20. ¹H NMR of 20 (500 MHz, d^8 -THF) δ 1.00 (d, *J* = 6.3 Hz, 6H, (*CH*₃)₂CH), 1.08 (d, *J* = 6.4 Hz, 6H, (*CH*₃)₂CH),

1.30 (s, 18H, C(*CH*₃)₃), 1.87 (s, 3H, C*CH*₃), 1.97 (s, 15H, C₅*Me*₅), 2.45-2.47 (m, 12H, N*CH*₂CH₂O), 3.37-3.41 (m, 2H, (CH₃)₂*CH*), 3.45-3.46 (m, 12H, NCH₂*CH*₂O), 3.51 (s, 12H, O*CH*₂*CH*₂O), 6.94-6.95 (m, 4H, Ar), 7.15-7.16 (m, 4H, Ar). ¹³C NMR of **20** (126 MHz, d^{8} -

THF) δ 12.27 (CCH₃), 13.43 (C₅*Me*₅), 25.98 ((CH₃)₂CH), 26.00 ((CH₃)₂CH), 32.55 (C(CH₃)₃), 34.87 (*C*(CH₃)₃), 48.68 ((CH₃)₂CH), 55.06 (NCH₂CH₂O), 68.69 (NCH₂CH₂O), 71.50 (OCH₂CH₂O), 118.86 (*C*₅Me₅), 122.73 (Ar), 124.72 (Ar), 143.12 (Ar), 153.06 (Ar), 171.02 (NCN), 178.17 (SCN). Anal. Calcd for C₅₈H₉₄KN₆O₆S₂Sc of **20**: C, 62.22; H, 8.46; N, 7.51. Found: C, 61.77; H, 8.42; N, 6.86.

2) Copies of ¹H NMR and ¹³C NMR Spectra

Figure S1. ¹H NMR spectrum of 4 (25 °C, 400 MHz, d^8 -THF).

Figure S2. ¹³C NMR spectrum of 4 (25 °C, 126 MHz, d^8 -THF).

Figure S3. ¹H NMR spectrum of 5 (25 °C, 400 MHz, d^8 -THF).

Figure S4. ¹H NMR spectrum of 6 (25 °C, 400 MHz, d^8 -THF).

Figure S5. ¹³C NMR spectrum of 6 (25 °C, 126 MHz, d^8 -THF).

Figure S6. ¹H NMR spectrum of 7 (25 °C, 400 MHz, d^8 -THF).

Figure S7. ¹H NMR spectrum of **8** (25 °C, 500 MHz, d^8 -THF, "*" represents the residual Et₂O and hexane).

Figure S8. ¹³C NMR spectrum of **8** (25 °C, 126 MHz, d^8 -THF, "*" represents the residual Et₂O and hexane).

Figure S9. ¹H NMR spectrum of 9 (25 °C, 500 MHz, d^{8} -THF).

Figure S10. ¹³C NMR spectrum of **9** (25 °C, 126 MHz, *d*⁸-THF).

Figure S11. ¹H NMR spectrum of 10 (25 °C, 600 MHz, d^8 -THF).

Figure S12. ¹³C NMR spectrum of **10** (25 °C, 151 MHz, *d*⁸-THF).

Figure S13. ¹H NMR spectrum of **11** (-40°C, 500 MHz, *d*⁸-THF).

Figure S15. ¹³C NMR spectrum of **11** (25 °C, 126 MHz, *d*⁸-THF).

Figure S16. ¹H NMR spectrum of **12** (25 °C, 600 MHz, d^8 -THF, "*" represents the residual

Figure S17. ¹³C NMR spectrum of 12 (25 °C, 151 MHz, d^8 -THF, "*" represents the isomers of 12).

S19

Figure S18. ¹H NMR spectrum of 13 (25 °C, 500 MHz, d⁸-THF, "*" represents the residual

Figure S19. ¹³C NMR spectrum of 13 (25 °C, 126 MHz, *d*⁸-THF, "*" represents the isomers

Figure S20. Variable temperature ¹H NMR spectrum of 13 (500 MHz, d^{8} -THF).

-5.38

Figure S21. ¹H NMR spectrum of 14 (25 °C, 600 MHz, d^8 -THF).

Figure S22. ¹³C NMR spectrum of 14 (25 °C, 151 MHz, d^8 -THF).

Figure S23. ¹H NMR spectrum of 15 (25 °C, 500 MHz, d^8 -THF).

Figure S24. ¹³C NMR spectrum of **15** (25 °C, 126 MHz, *d*⁸-THF).

Figure S26. ¹³C NMR spectrum of **16** (25 °C, 151 MHz, *d*⁸-THF).

Figure S27. ¹H NMR spectrum of **17** (25 °C, 500 MHz, *d*⁸-THF, "*" represents the residual naphthalene).

Figure S28. ¹³C NMR spectrum of **17** (25 °C, 126 MHz, *d*⁸-THF).

Figure S30. ¹³C NMR spectrum of **18** (25 °C, 126 MHz, *d*⁸-THF).

Figure S31. ¹H NMR spectrum of 19 (25 °C, 500 MHz, d^8 -THF).

Figure S32. ¹³C NMR spectrum of **19** (25 °C, 126 MHz, *d*⁸-THF).

Figure S34. ¹³C NMR spectrum of **20** (25 °C, 126 MHz, *d*⁸-THF).

3) X-ray Crystallographic Studies

The single crystals of 5.0.5Et₂O, 7, 8.0.5THF, 9.1.5THF, 10.0.5THF, 11, 13. THF, 14, 15. Et₂O, 16, 17. 2THF, 18 and 19 suitable for X-ray analysis were obtained as described in the experimental details. In addition, even though the quality of the crystals of compound 20 was not satisfactory for determining the precise bond parameters, its data was also included here. Data collections were performed on a XtaLAB PRO 007HF(Mo): Kappa single diffractometer at 180 or 120 K. Using Olex2,³ the structures were solved with Superflip⁴ structure solution program using Charge Flipping or ShelXS-97⁵ structure solution program using Direct Methods and refined with the ShelXL⁶ refinement package using Least Squares minimization. Refinement was performed on F^2 anisotropically for all the non-hydrogen atoms by the fullmatrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre with supplementary publication numbers: CCDC 2156576 (5.0.5Et₂O), CCDC 2155848 (7), CCDC 2210604 (8.0.5THF), CCDC 2210605 (9.1.5THF), CCDC 2210606 (10.0.5THF), CCDC 2210607 (11), CCDC 2210609 (13·THF), CCDC 2210610 (14), CCDC 2210611 (15·Et₂O), CCDC 2210617 (16), CCDC 2210618 (17·2THF), CCDC 2210619 (18), CCDC 2210620 (19), CCDC 2219302 (20). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S35. ORTEP drawing of repeating unit (top) and one dimensional molecular structure (bottom) of **5**•0.5Et₂O with 30% thermal ellipsoids. H atoms are omitted for clarity.

Identification code	5.0.5Et2O
Empirical formula	$C_{68}H_{110}K_2N_4O_3Sc_2$
Formula weight	1199.71
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	13.6050(5)
b/Å	17.5505(7)
c/Å	15.2757(5)
α/°	90
β/°	100.663(4)
$\gamma/^{\circ}$	90
Volume/Å ³	3584.5(2)
Z	2
$\rho_{calc}g/cm^3$	1.112
μ/mm^{-1}	0.349
F(000)	1300.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.01 to 54.968
Index ranges	$-17 \le h \le 17, -22 \le k \le 22, -19 \le l \le 19$
Reflections collected	38035
Independent reflections	8155 [$R_{int} = 0.0293$, $R_{sigma} = 0.0258$]
Data/restraints/parameters	8155/49/393
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0387, wR_2 = 0.1016$
Final R indexes [all data]	$R_1 = 0.0494, wR_2 = 0.1065$
Largest diff. peak/hole / e Å ⁻³	0.47/-0.29

Table S1 Crystal data and structure refinement for 5.0.5Et₂O.

Figure S36. ORTEP drawing of repeating unit (top) and one dimensional molecular structure (bottom) of **7** with 30% thermal ellipsoids. H atoms are omitted for clarity.

Identification code	7
Empirical formula	$C_{32}H_{50}KLuN_2O$
Formula weight	692.81
Temperature/K	120.00(11)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	13.6874(2)
b/Å	17.4996(3)
c/Å	15.2388(3)
$\alpha/^{\circ}$	90
β/°	100.245(2)
$\gamma/^{\circ}$	90
Volume/Å ³	3591.86(11)
Z	4
$\rho_{calc}g/cm^3$	1.281
μ/mm^{-1}	2.887
F(000)	1416.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.01
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.39 to 54.966
Index ranges	$-17 \le h \le 17, -22 \le k \le 22, -19 \le l \le 19$
Reflections collected	84148
Independent reflections	8221 [$R_{int} = 0.0433$, $R_{sigma} = 0.0208$]
Data/restraints/parameters	8221/0/361
Goodness-of-fit on F ²	1.065
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0209, wR_2 = 0.0501$
Final R indexes [all data]	$R_1 = 0.0250, wR_2 = 0.0513$
Largest diff. peak/hole / e Å ⁻³	0.76/-0.39

Table S2 Crystal data and structure refinement for 7.

Figure S37. ORTEP drawing of **8.0.5THF** with 30% thermal ellipsoids. H atoms are omitted for clarity.

Table S3. Crystal data and structure refinement for 8.0.5THF.

Identification code	8·0.5THF
Empirical formula	$C_{96}H_{160}K_2N_8O_{13}Sc_2$
Formula weight	1802.43
Temperature/K	179.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	13.7946(3)
b/Å	18.3153(4)
c/Å	20.4944(4)
α/°	85.122(2)
β/°	85.020(2)
$\gamma/^{\circ}$	88.474(2)
Volume/Å ³	5138.76(19)
Z	2
$\rho_{calc}g/cm^3$	1.165
μ/mm^{-1}	0.273
F(000)	1952.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.216 to 50.052
Index ranges	$-11 \le h \le 16, -21 \le k \le 21, -24 \le l \le 24$
	S32

Figure S38. ORTEP drawing of **9-1.5THF**, with 30% thermal ellipsoids. H atoms are omitted for clarity.

Table 4 Crystal data and structure refinement for 9.1.5THF.		
Identification code	9·1.5THF	
Empirical formula	$C_{104}H_{176}K_2Lu_2N_8O_{15}$	
Formula weight	2206.66	
Temperature/K	180.00(10)	
Crystal system	monoclinic	
Space group	C2/c	
a/Å	30.2986(6)	
b/Å	10.8607(2)	
c/Å	33.5531(6)	
$\alpha/^{\circ}$	90	
β/°	96.797(2)	
$\gamma/^{\circ}$	90	
Volume/Å ³	10963.5(4)	
Z	4	
$\rho_{calc}g/cm^3$	1.337	
μ/mm^{-1}	1.928	
F(000)	4624.0	
Crystal size/mm ³	$0.2\times0.1\times0.1$	
Radiation	Mo K α (λ = 0.71073)	
2Θ range for data collection/°	4.124 to 54.97	

Index ranges

Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma(I)]$ Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ $-39 \le h \le 39, -14 \le k \le 13, -43$ $\leq 1 \leq 43$ 41569 12528 [$R_{int} = 0.0238$, $R_{sigma} = 0.0257$] 12528/240/669 1.037 $R_1 = 0.0267, wR_2 = 0.0644$ $R_1 = 0.0329, wR_2 = 0.0666$ 0.73/-0.52

Figure S39. ORTEP drawing of 10.0.5THF, with 30% thermal ellipsoids. H atoms are omitted for clarity.

Table 5 Crystal data and structure refinement for 10.0		
Identification code	10·0.5THF	
Empirical formula	$C_{100}H_{168}K_2N_8O_{13}Sc_2$	
Formula weight	1858.53	
Temperature/K	179.99(10)	
Crystal system	monoclinic	
Space group	P2/c	
a/Å	13.6453(5)	
b/Å	9.4122(3)	
c/Å	40.3625(9)	
α/°	90	
β/°	93.140(3)	
γ/°	90	
Volume/Å ³	5176.1(3)	

.5THF.

Z	2
$\rho_{calc}g/cm^3$	1.192
μ/mm^{-1}	0.273
F(000)	2016.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo K α (λ = 0.71073)
2Θ range for data collection/°	4.042 to 54.97
Index ranges	$-17 \leq h \leq 16, -12 \leq k \leq 9, -52 \leq l \leq 52$
Reflections collected	31684
Independent reflections	11518 [$R_{int} = 0.0337$, $R_{sigma} = 0.0379$]
Data/restraints/parameters	11518/99/598
Goodness-of-fit on F ²	1.048
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0435, wR_2 = 0.1190$
Final R indexes [all data]	$R_1 = 0.0556, wR_2 = 0.1253$
Largest diff. peak/hole / e Å ⁻³	0.64/-0.37

Figure S40. ORTEP drawing of **11** with 30% thermal ellipsoids. H atoms are omitted for clarity.

Table 6 Crystal	data and	structure	refinement	for	11.
Table 0 Crystar	uata anu	suucuic	remement	101	11.

Identification code	11
Empirical formula	C50H78KN4O6Sc
Formula weight	915.22
Temperature/K	180.01(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.4070(2)
b/Å	15.5999(3)
c/Å	17.6211(3)
$\alpha/^{\circ}$	91.7330(10)
β/°	95.252(2)
γ/°	94.0910(10)
Volume/Å ³	2566.69(9)
Z	2

$\rho_{calc}g/cm^3$	1.184
µ/mm ⁻¹	0.273
F(000)	988.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.744 to 54.966
Index ranges	$-12 \le h \le 12, -19 \le k \le 20, -22 \le l \le 22$
Reflections collected	47258
Independent reflections	11731 [$R_{int} = 0.0263, R_{sigma} = 0.0243$]
Data/restraints/parameters	11731/1/569
Goodness-of-fit on F ²	1.036
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0392, wR_2 = 0.1038$
Final R indexes [all data]	$R_1 = 0.0460, wR_2 = 0.1083$
Largest diff. peak/hole / e Å ⁻³	0.38/-0.33

Figure S41. ORTEP drawing of **13·THF** with 30% thermal ellipsoids. H atoms are omitted for clarity.

Table 7 Crystal data and structure refinement for 13. THF.		
13·THF		
$C_{51}H_{80}KN_2O_7Sc$		
917.23		
179.99(10)		
triclinic		
P-1		
9.7124(5)		
13.9668(6)		

18.9725(6)
85.128(3)
88.404(4)
86.159(4)
2557.95(19)
2
1.191
0.275
992.0
$0.13 \times 0.09 \times 0.08$
Mo K α ($\lambda = 0.71073$)
7.322 to 54.966
$-12 \le h \le 12, -18 \le k \le 18, -24 \le l \le 24$
40027
11028 [$R_{int} = 0.0511$, $R_{sigma} = 0.0393$]
11028/23/569
1.062
$R_1 = 0.0820, wR_2 = 0.1894$
$R_1 = 0.1113, wR_2 = 0.2152$
0.84/-0.47

Figure S42. ORTEP drawing of 14 with 30% thermal ellipsoids. H atoms are omitted for clarity.

Table 8 Crystal data and structure refinement for 14.

Identification code	14
Empirical formula	$C_{44}H_{76}KN_4O_6Sc$
Formula weight	841.14
Temperature/K	179.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	16.0903(3)
b/Å	17.1168(4)

c/Å	17.4633(3)
α/°	100.677(2)
β/°	96.7050(10)
γ/°	93.635(2)
Volume/Å ³	4676.20(16)
Z	4
$\rho_{calc}g/cm^3$	1.195
µ/mm ⁻¹	0.294
F(000)	1824.0
Crystal size/mm ³	$0.2 \times 0.1 \times 0.1$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.81 to 50.048
Index ranges	$-19 \le h \le 18, -20 \le k \le 20,$
inden ranges	$-20 \leq 1 \leq 20$
Reflections collected	87215
Independent reflections	16502 [R _{int} = 0.0262, R _{sigma} = 0.0199]
Data/restraints/parameters	16502/246/1102
Goodness-of-fit on F ²	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0325, wR_2 = 0.0853$
Final R indexes [all data]	$R_1 = 0.0384, wR_2 = 0.0887$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.39

Figure S43. ORTEP drawing of **15**•**Et**₂**O** with 30% thermal ellipsoids. H atoms are omitted for clarity.

Table 9 Crystal data and structur	Table 9 Crystal data and structure refinement for 15-Et ₂ O.	
Identification code	$15 \cdot Et_2O$	
Empirical formula	$C_{56}H_{90}KN_4O_7Sc$	
Formula weight	1015.37	
Temperature/K	179.99(10)	
Crystal system	triclinic	
Space group	P-1	
a/Å	12.5935(5)	
b/Å	14.3739(10)	
c/Å	16.6262(10)	
α/°	79.018(5)	
β/°	75.788(4)	
γ/°	85.957(4)	
Volume/Å ³	2863.2(3)	
Z	2	
$\rho_{calc}g/cm^3$	1.178	
μ/mm^{-1}	0.253	
F(000)	1100.0	
Crystal size/mm ³	0.2 imes 0.1 imes 0.1	
Radiation	Mo K α ($\lambda = 0.71073$)	
2Θ range for data collection/°	4.194 to 52.044	
Index ranges	$-15 \le h \le 15, -15 \le k \le 17, -20 \le l \le 20$	
Reflections collected	36620	
Independent reflections	11266 [$R_{int} = 0.0388$, $R_{sigma} = 0.0409$]	
Data/restraints/parameters	11266/0/634	
Goodness-of-fit on F ²	1.092	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0622, wR_2 = 0.1655$	
Final R indexes [all data]	$R_1 = 0.0795, wR_2 = 0.1740$	
Largest diff. peak/hole / e Å ⁻³	0.94/-0.37	

Figure S44. ORTEP drawing of 16 with 30% thermal ellipsoids. H atoms are omitted for clarity.

•	
Identification code	16
Empirical formula	$C_{36}H_{68}KN_4O_6ScSe_3$
Formula weight	973.88
Temperature/K	180.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.2246(3)
b/Å	13.9675(5)
c/Å	18.4487(5)
α/°	68.089(3)
β/°	87.193(3)
$\gamma/^{\circ}$	86.058(3)
Volume/Å ³	2437.82(14)
Z	2
$\rho_{calc}g/cm^3$	1.327
μ/mm^{-1}	2.516
F(000)	1004.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo K α (λ = 0.71073)
20 range for data collection/°	4.598 to 54.968
Index ranges	$-13 \le h \le 13, -18 \le k \le 18, -23 \le l \le 23$
Reflections collected	49833
Independent reflections	11123 [$R_{int} = 0.0825$, $R_{sigma} = 0.0610$]
Data/restraints/parameters	11123/0/470
Goodness-of-fit on F ²	1.059
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0412, wR_2 = 0.1130$
Final R indexes [all data]	$R_1 = 0.0505, wR_2 = 0.1175$
Largest diff. peak/hole / e Å ⁻³	1.24/-0.97

Figure S45. ORTEP drawing of **17·2THF** with 30% thermal ellipsoids. H atoms are omitted for clarity.

Table 11 Crystal data and structure refinement for 17-2THF.	
Identification code	17·2THF
Empirical formula	$C_{70}H_{104}KN_4O_{10}Sc$
Formula weight	1245.63
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.6359(4)
b/Å	17.6165(5)
c/Å	33.6917(10)
α/°	90
β/°	91.369(3)
$\gamma/^{\circ}$	90
Volume/Å ³	6904.3(4)
Z	4
$\rho_{calc}g/cm^3$	1.198
μ/mm^{-1}	0.225
F(000)	2688.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.196 to 54.97
Index ranges	$-15 \le h \le 15, -22 \le k \le 20, -42 \le l \le 43$
Reflections collected	52686
Independent reflections	15630 [$R_{int} = 0.0381$, $R_{sigma} = 0.0458$]
Data/restraints/parameters	15630/343/831
Goodness-of-fit on F ²	1.057
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0541, wR_2 = 0.1433$
Final R indexes [all data]	$R_1 = 0.0750, wR_2 = 0.1549$
Largest diff. peak/hole / e Å ⁻³	0.76/-0.52

Figure S46. ORTEP drawing of 18 with 30% thermal ellipsoids. H atoms are omitted for clarity.

Identification code	18
Empirical formula	$C_{66}H_{112}KN_6O_7Sc$
Formula weight	1185.67
Temperature/K	180.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	13.8502(2)
b/Å	15.8688(3)
c/Å	19.0795(3)
α/°	66.0290(17)
β/°	68.9222(16)
γ/°	68.3630(17)
Volume/Å ³	3451.33(12)
Z	2
$\rho_{calc}g/cm^3$	1.141
μ/mm^{-1}	0.219
F(000)	1292.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.822 to 50.054
Index ranges	$-16 \le h \le 16, -18 \le k \le 18, -22 \le l \le 22$
Reflections collected	61151
Independent reflections	12157 [$R_{int} = 0.0289, R_{sigma} = 0.0217$]
Data/restraints/parameters	12157/0/756
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0309, wR_2 = 0.0808$
Final R indexes [all data]	$R_1 = 0.0361, wR_2 = 0.0835$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.28

Table 12 Crystal data and structure refinement for 18.

Figure S47. ORTEP drawing of 19 with 30% thermal ellipsoids. H atoms are omitted for clarity.

Table 13 Crystal data and structure refinement for 19.	
Identification code	19
Empirical formula	$C_{62}H_{104}KLuN_6O_6$
Formula weight	1243.58
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	17.4795(4)
b/Å	18.4821(4)
c/Å	23.1071(6)
α/°	90
β/°	106.350(2)
$\gamma/^{\circ}$	90
Volume/Å ³	7163.0(3)
Z	4
$\rho_{calc}g/cm^3$	1.153
μ/mm^{-1}	1.482
F(000)	2624.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.858 to 54.966
Index ranges	-22 \leq h \leq 20, -24 \leq k \leq 23, -29 \leq l \leq 30
Reflections collected	78347
Independent reflections	16327 [R_{int} = 0.0319, R_{sigma} = 0.0271]
Data/restraints/parameters	16327/0/711
Goodness-of-fit on F ²	1.044
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0225, wR_2 = 0.0563$
Final R indexes [all data]	$R_1 = 0.0289, wR_2 = 0.0581$
Largest diff. peak/hole / e Å ⁻³	0.42/-0.30

Figure S48. ORTEP drawing of 20 with 30% thermal ellipsoids. H atoms are omitted for clarity.

Table 14 Crystal data and structure	
Identification code	20
Empirical formula	$C_{58}H_{94}KN_6O_6S_2Sc$
Formula weight	1119.57
Temperature/K	151(40)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	10.7649(6)
b/Å	25.5216(13)
c/Å	24.0285(16)
α/°	90
β/°	100.632(6)
$\gamma/^{\circ}$	90
Volume/Å ³	6488.2(7)
Z	4
$\rho_{calc}g/cm^3$	1.146
µ/mm ⁻¹	0.291
F(000)	2416.0
Crystal size/mm ³	$0.2 \times 0.1 \times 0.1$
Radiation	Mo K α (λ = 0.71073)
2Θ range for data collection/°	4.168 to 50.054
Index ranges	$-12 \le h \le 12, -28 \le k \le 30, -28 \le 1$
index ranges	≤ 23
Reflections collected	40548
Independent reflections	11420 [$R_{int} = 0.0634$, $R_{sigma} = 0.0605$]
Data/restraints/parameters	11420/0/683
Goodness-of-fit on F ²	1.046
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1079, wR_2 = 0.2866$
Final R indexes [all data]	$R_1 = 0.1530, wR_2 = 0.3225$
Largest diff. peak/hole / e Å ⁻³	0.88/-0.65

Table 14 Crystal data and structure refinement for 20.

4) The Cyclic Voltammetry of 8 and 9

Figure S49. The cyclic voltammogram of compound **8** (0.002 M) in THF at room temperature containing 0.2 M n Bu₄NPF₆ as the supporting electrolyte, measured at 100 mV/s. The cyclic voltammogram showed two oxidation peaks at -1.96 V and -1.64 V.

Figure S50. The cyclic voltammogram of compound **9** (0.002 M) in THF at room temperature containing 0.2 M n Bu₄NPF₆ as the supporting electrolyte, measured at 100 mV/s. The cyclic voltammogram showed two oxidation peaks at -1.97 V and -1.65 V.

5) References

(1) Lv, Z.-J.; Huang, Z.; Zhang, W.-X.; Xi, Z. Scandium-Promoted Direct Conversion of Dinitrogen into Hydrazine Derivatives via N–C Bond Formation. *J. Am. Chem. Soc.* **2019**, *141*, 8773-8777.

(2) Lv, Z.-J.; Chai, Z.; Zhu, M.; Wei, J.; Zhang, W.-X. Selective Coupling of Lanthanide Metallacyclopropenes and Nitriles via Azametallacyclopentadiene and η^2 -Pyrimidine Metallacycle. *J. Am. Chem. Soc.* **2021**, *143*, 9151-9161.

(3) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *OLEX2*: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.* **2009**, *42*, 339-341.

(4) Palatinus, L.; Prathapa, S. J; van Smaalen, S. *EDMA*: A Computer Program for Topological Analysis of Discrete Electron Densities. *J. Appl. Cryst.* **2012**, *45*, 575-580.

(5) Sheldrick, G. M. A Short History of SHELX. Acta Cryst. 2008, A64, 112-122.

(6) Sheldrick, G.M. Crystal Structure Refinement with *SHELXL. Acta Cryst.* **2015**, *C71*, 3-8.