Electronic Supplementary Information

Solid-state lithium metal battery with extended cycling and rate performance by a low-melting alloy interface

Tingting Luo^a, Ling Wang^a, Lei Dai^a, Jiayan Luo^b, Shan Liu*^a

^aSchool of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China. E-mail: sliu@ncst.edu.cn

^bShanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

*Corresponding author. sliu@ncst.edu.cn *Preparation of solid electrolytes*: The solid electrolyte $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ was synthesized by the high-temperature solid-state phase method. $Li_2CO_3(99.8\%)$, $TiO_2(99.9\%)$ and $Al_2O_3(99.5\%)$ were selected as the starting powder and dried in the oven for 24h to remove the moisture in the raw materials. The drying raw materials and NH4H2PO4(99%) were weighed according to the stoichiometric ratio, and then performed the first ball milling. After drying, the mixture was ground and calcined at 850 °C for 6h, followed by a second ball mill and high-temperature calcination. The obtained solid electrolyte powder was pressed into an electrolyte pellet with a diameter of 12mm on a single axis of 10 mPa. The electrolytes were sintered for 4h at 800 °C in air and sintered in an alumina crucible. Prior to other measurements and tests, the electrolyte pellets were drypolished with sandpaper to make their surfaces smooth and contamination-free. Finally, $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ electrolyte pellets with a diameter of 11mm and a thickness of 1mm were obtained.

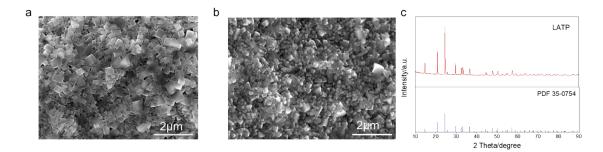


Fig. S1. Surface and cross-sectional SEM images of $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ pellet. (a, b) and XRD pattern of as-prepared LATP and standard $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ (c).

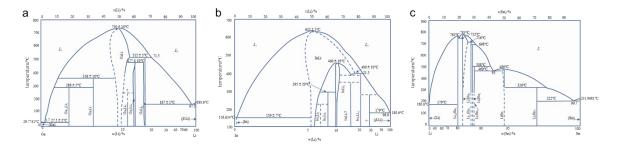
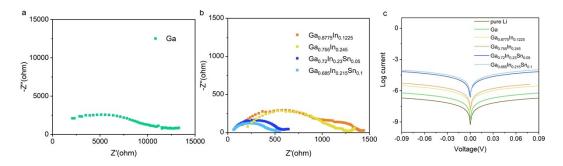
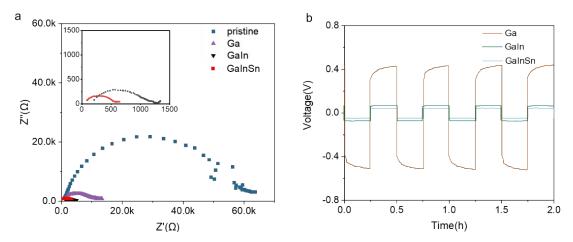




Fig. S2. Phase diagram of the Li-Ga, Li-In and Li-Sn alloy.

Fig. S3. EIS and Tafel plot of the cell with different elemental contents of the lowmelting alloy.

Fig. S4. Interfacial resistance of different liquid metal interlayer (a), the corresponding circular graph at 0.05 mA cm⁻² (b).

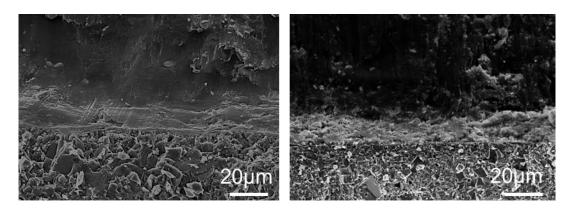
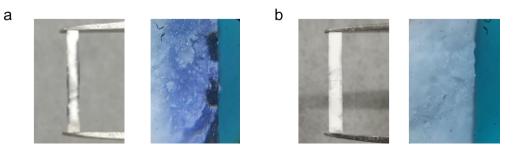
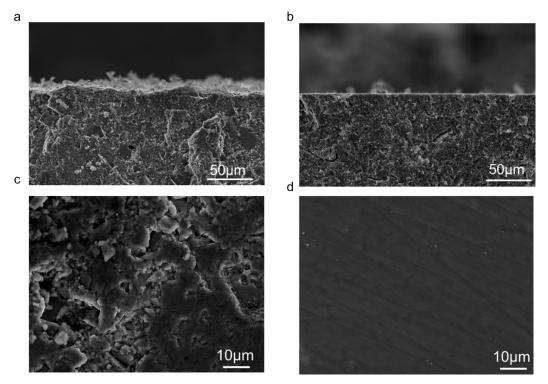




Fig. S5. Cross-section SEM images of before cycling (left) and after cycling (right).

Fig. S6. Cross-sectional optical microscope image of the LATP with pure Li (a), with LMA@Li (b).

Fig. S7. Cross-sectional SEM image of the cycled LATP with pure Li (a), with LMA@Li (b). Top view SEM image of the LATP with pure Li (c), with LMA@Li (d)

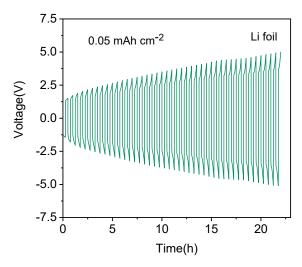


Fig. S8. The Galvanostatic cycling of symmetric cells with pure Li at 0.05 mA cm⁻².

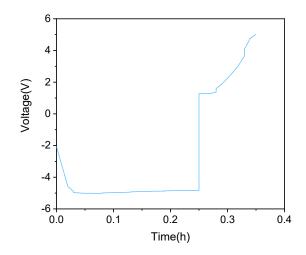


Fig. S9. The Galvanostatic cycling of symmetric cells with pure Li at 0.2 mA cm⁻².

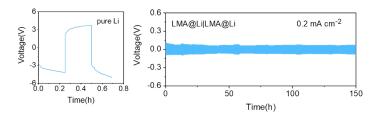


Fig. S10. The voltage profile of pure Li and LMA@Li at 60 oC with 0.2 mA cm-2.

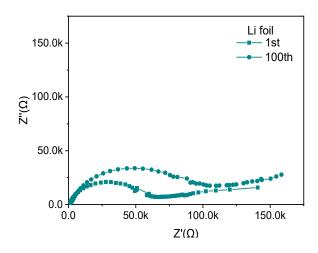


Fig S11. EIS of the symmetric cell with pure Li before cycling and after 100 cycles.

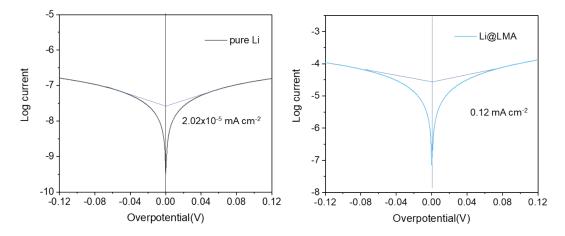


Fig. S12. Tafel plot of LATP with pure Li and LMA@Li.

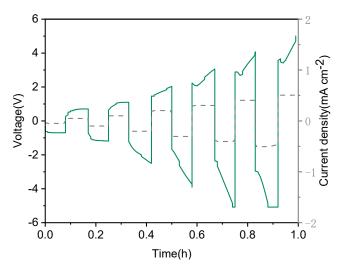


Fig. S13. Rate performance of symmetric cells with pure Li at different current densities from 0.05 to 0.5 mA cm⁻²

Sample	Crystal structure	a (Å)	b (Å)	c (Å)	
LiTi ₂ (PO ₄) ₃	R-3c	8.513	8.513	20.878	
Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃	R-3c	8.500	8.500	20.808	
Agreement factors: $R_p=9.1$, $R_{wp}=12.8$					

Table S1: Results of the refinements of the structural parameters for LATP.

	Binding energy (eV)	FWHM (eV)	Area (%)
Ti ⁴⁺ 2p _{3/2}	459.9	1.098	36.57
$Ti^{3+} 2p_{3/2}$	458.5	1.87	36.48
$Ti^{4+} 2p_{1/2}$	465.8	1.37	10.76
$Ti^{3+} 2p_{1/2}$	464.4	2.06	17.18

Table S2: Parameters used to curve fit Ti 2p from LATP with pure Li.

	Binding energy (eV)	FWHM (eV)	Area (%)
Ti ⁴⁺ 2p _{3/2}	459.6	1.53	66.17
$Ti^{4+} 2p_{1/2}$	465.3	2.24	33.8

Table S3: Parameters used to curve fit Ti 2p from LATP with LMA@Li.

Туре	Current	Overpotential	Cycle	Ref.
	density	(mV)	time (h)	
	(mA cm ⁻²)			
Si/LLZO/Si	0.1	100	12	[1]
Al ₂ O ₃ /LATP/ Al ₂ O ₃	0.01	900	600	[2]
LATP-PEO	0.1	200	200	[3]
Al ₂ O ₃ -doped ZnO-LATP	0.1	400	800	[4]
IL@SPF-LATP	0.05	200	850	[5]
Al/LLZO/Al	0.1	25	34	[6]
LMA@Li/LATP/LMA@L	0.05	50	1200	This
i				work

Table S4. Comparison of cell cycle time of solid lithium metal batteries based on solidstate electrolytes.

- W. Luo, Y. Gong, Y. Zhu, K. K. Fu, J. Dai, S. D. Lacey, C. Wang, B. Liu, X. Han, Y. Mo, E. D. Wachsman and L. Hu, Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. *J. Am. Chem. Soc.*, 2016, 138, 12258-12262.
- [2]. Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K. R. Adair, R. Li, C. Zhang, J. Liu, L.-Y. Kuo, Y. Hu, T.-K. Sham, L. Zhang, R. Yang, S. Lu, X. Song and X. Sun, Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. ACS Appl. Mater. Interfaces., 2018, 10, 31240-31248.
- [3]. Z. Yang, H. Yuan, C. Zhou, Y. Wu, W. Tang, S. Sang and H. Liu, Facile interfacial adhesion enabled LATP-based solid-state lithium metal battery. *Chem. Eng. J.*, 2020, 392, 123650

- [4]. H. Bai, J. Hu, Y. Duan, T. Kozawa, M. Naito, J. Zhang and S. Dong, Surface modification of Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃ ceramic electrolyte by Al₂O₃-doped ZnO coating to enable dendrites-free all-solid-state lithium-metal batteries. *Ceram. Int.*, 2019, **45**, 14663-14668.
- [5]. M. Lei, S. Fan, Y. Yu, J. Hu, K. Chen, Y. Gu, C. Wu, Y. Zhang and C. Li, NASICON-based solid state Li-Fe-F conversion batteries enabled by multiinterface-compatible sericin protein buffer layer. *Energy Storage Mater.*, 2022, 47, 551-560.
- [6]. K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S. D. Lacey and J. J. S. A. Dai, Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. *Sci. Adv.*, 2017, **3**, e1601659.