Supporting information

Electrochemically induced amorphous VO_x/N doped carbon porous spheres cathode for advanced aqueous zinc-ion battery

Jujun Yuan,^a Yunfei Gan,^{a,b} jirong Mou,^a Xiangdong Ma,^a Xiaokang Li,^{*a,b} Junxia Meng,^a Lishuang Xu,^a Xianke Zhang,^{*a} Haishan He,^{a,b} Meiqi Mu,^a Jun Liu,^{*a,c}

^aKey Laboratory of New Energy Materials and Low Carbon Technologies, College of Physics and Electronics, Gannan Normal University, Ganzhou 341000, PR China ^bCollege of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China ^cSchool of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China

*Corresponding authors: lixiaokang@gnnu.edu.cn ; zhangxianke77@163.com ; msjliu@scut.edu.cn

Detailed calculation processes of Zn²⁺ transfer coefficient

The Zn^{2+} diffusion is measured based on the analysis of impedance and according to Equations (1) and (2):

$$D_{Zn^{2+}} = R^2 T^2 / 2n^4 F^4 \sigma_w^2 A^2 C^2$$
(1)

$$Z' = R + \sigma_w w^{-1/2}$$
(2)

EIS was employed to calculate the Zn^{2+} transfer coefficient to study the effect of crystallinity on potassium storage performance. In Equations (1) and (2), R, T, n, F, A, C, and σ_w are the gas constant (8.314 J mol⁻¹ K⁻¹), the absolute temperature (301.15 K), the number of electrons per molecule during oxidation (2), the Faraday's constant (96485 C mol⁻¹), the surface area of the electrode (1.13 cm²), the Zn²⁺ concentration in the electrode material (3.0 mol L⁻¹), and the Warburg coefficient, respectively.

Fig.S1 (a,b) SEM images for V_2O_3/NC -3h porous spheres at different magnifications. (c) TEM image for V_2O_3/NC -3h porous spheres

Fig. S2 (a,b) SEM images for V₂O₃/NC-6h porous spheres at different magnifications. (c,d) TEM images for V₂O₃/NC-6h porous spheres at different magnifications. (e) EDS mapping for V₂O₃/NC-6h porous spheres.

Morphology	Synthesis method	Capacity retention (mAh g ⁻¹)	Referance
Graphene/VO ₂ composite	Freeze-drying/high temperature reduction	240 (1000 cycles) at 4 A g ⁻¹	[15]
V ₂ O ₃ /carbon composite	Ball-milling route	84(2000 cycles) At 5 A g ⁻¹	[29]
V ₂ O ₅ /3D nanocarbon	Atomic layer deposition	133(800 cycles) At 5 A g ⁻¹	[30]
3D spongy VO2-graphene	Hydrothermal/chemical reduction	267(5000cycles) At 10A g ⁻¹	[31]
Network C@V2O5	Chitosan-assisted hydrothermal process	250(2000 cycles) At 0.5A g ⁻¹	[41]
V2O5@PEDOT/C C	Solvothermal reaction/thermal treatment	223(2000cycles) At 5A g ⁻¹	[42]
Hydrated V ₂ O ₅ /PPy	Hydrothermal/chemical polymerization	165(5000 cycles) At 10A g ⁻¹	[44]
VO _x /NC porous spheres	Electrochemically inducing V ₂ O ₃ /NC porous spheres	233(2000 cycles) At 5A g ⁻¹	This work

 Table S1. The electrochemical performances for V-related oxides/carbon composites with

 different morphologies fabricated using different strategies in ZIBs.