Supporting information

Rational design of organic-inorganic hybrid with Schiff based

cation for efficient quadratic nonlinear optical switch

Kai Li,^{ac} Huang Ye,^{ab} Xiaoqi Li,^a Xinqiang Wang*^c, Junhua Luo*^{ab} and Xitao Liu*^{abc}

Figure S1. Crystal photograph of **1**.

Figure S2. Experimental and simulated Powder X-ray diffraction patterns for 1.

Figure S3. The ¹HNMR spectrum of the Schiff base.

Figure S4. The ¹HNMR spectrum of 1.

Figure S5. The TG curves of **1**. This compound can maintain the thermal stable up to 470 K.

Figure S6. a) Differential scanning calorimetry of **1** at different heating/cooling rate. b) The actual phase transition point confirmed by extrapolating intercept of the plot of peak points at different heating/cooling rates and is finally measured to be 411 K.

Figure S7. The N- H...Br hydrogen-bonding interactions between organic cations and inorganic framework in compound **1** were showed at a) LTP and b) HTP. Some hydrogen bonds were omitted for clarity.

Figure S8. The UV/vis absorption spectrum of **1**, the absorption edge of this compound is estimated to be 420 nm.

Figure S9. Completely reversible and recoverable switching of SHG effects.

Figure S10. a) Electronic band structure and b) partial density of states for 1.

Empirical formula	$C_{10}H_{14}Br_3NPb$	$C_{10}H_{14}Br_3NPb$		
Formula weight	595.14	595.14		
Temperature/K	100.01	419.98		
Crystal system	orthorhombic	orthorhombic		
Space group	P212121	Imma		
a/Å	7.7413(4)	14.8489(16)		
<i>b</i> /Å	13.0896(7)	7.7744(7)		
c/Å	14.4126(7)	13.5892(14)		
$\alpha /^{\circ}$	90	90		
$eta/^{\circ}$	90	90		
γ/°	90	90		
Volume/Å ³	1460.44(13)	1568.8(3)		
Ζ	4	4		
$\rho_{calc}g/cm^3$	2.707	2.520		
µ/mm ⁻¹	19.732	18.370		
F(000)	1072.0	1072.0		
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)		
2θ range for data collection/°	6.114 to 50.174	6.038 to 55.084		
Index ranges	-9≤h≤9, -15≤k≤12, -17≤l≤17	-19 <i>≤h</i> ≤18,-9 <i>≤k</i> ≤10, -17 <i>≤l</i> ≤17		
Reflections collected	8643	6460		
T 1 1 . O .'	2591 [$R_{int} = 0.0521$, $R_{sigma} =$	1002 [$R_{int} = 0.0359, R_{sigma} =$		
independent reflections	0.0494]	0.0221]		
Data/restraints/parameters	2591/0/137	1002/67/85		
Goodness-of-fit on F ²	0.945	1.040		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0252, wR_2 = 0.0578$	$R_1 = 0.0272, wR_2 = 0.0591$		
Final R indexes [all data]	$R_1 = 0.0267, wR_2 = 0.0591$	$R_1 = 0.0481, wR_2 = 0.0694$		

 Table S1. Crystal structure and refinement detail of 1 at different temperatures.

 Table S2. Bond lengths of 1 at different temperatures.

	LTP				HTP		
Pb1-Br2	2.9209(10)	C5-C6	1.408(13)	Pb1-Br11	3.0508(5)	C2-C3	1.343(6)
Pb1-Br2 ¹	3.1662(10)	N1-C8	1.466(11)	Pb1-Br1	3.0508(5)	C4-C3 ³	1.348(6)
Pb1-Br1 ²	3.0820(10)	C5-C4	1.375(14)	Pb1-Br2	3.0279(4)	C4-C3	1.348(6)
Pb1-Br1	2.9593(10)	C8-C9	1.527(15)	Pb1-Br2 ²	3.0279(4)	C3-C5	1.508(9)
Pb1-Br3	2.9476(10)	C2-C3	1.404(13)	Pb1-Br2 ³	3.0279(4)	C7-C8	1.520(10)
Pb1-Br3 ²	3.0910(10)	C2-C1	1.371(14)	Pb1-Br21	3.0279(4)	C7-C6	1.502(10)
C6-C1	1.405(14)	C6-C7	1.443(13)	C1-C2 ³	1.366(6)	N1-C5	1.349(9)
C3-C4	1.379(15)	C10-C9	1.512(14)	C1-C2	1.366(6)	N1-C6	1.469(10)
C7-N1	1.270(13)						
¹ 1/2+X,1/2-	-Y,1-Z; ² -1/2+X,1/2-Y	Y,1-Z		¹ -X,1-Y,2-Z	Z; ² +X,1/2+Y,2-Z; ³ -X	K,1/2-Y,+Z	

 Table S3. Bond angles of 1 at different temperatures.

LTP			HTP				
Br2-Pb1-Br2 ¹	171.17(3)	Pb1-Br2-Pb1	² 78.98(2)	Br1-Pb1-Br11	180.0 Br2	-Pb1-Br2 ²	94.550(15)
Br2-Pb1-Br1	93.71(3)	Pb1-Br1-Pb1 ¹	79.79(2)	Br2-Pb1-Br11	82.3(1	0) Pb	1 ⁴ -Br1-Pb1
Br2-Pb1-Br12-	84.46(3)	Pb1-Br3-Pb11	79.82(2)	79.150(15)			
Br2-Pb1-Br3	89.87(3)	C4-C5-C6	120.0(9)	Br2-Pb1-Br1 9	7.677(10) F	b1 ³ -Br2-Pb	01
Br2-Pb1-Br3 ²	83.74(3)	C1-C2-C3	120.0(10)	79.86 (12)			
Br1 ² -Pb1-Br2 ¹	99.08(3)	C5-C6-C7	123.2(10)	Br2 ² -Pb1-Br1	82.323(10)	C2 ³ -C1-C	2 116.9(7)
Br1-Pb1-Br2 ¹	82.36(3)	C1-C6-C5	119.6(9)	Br2 ² -Pb1-Br1 ¹	97.677(10)	C3-C2-C	1 122.0(6)
Br1-Pb1-Br1 ²	176.810(14)	C1-C6-C7	117.2(9)	Br2 ³ -Pb1-Br1 ¹	82.323(10)	C3-C4-C3	³ 121.0(7)
Br1-Pb1-Br3 ²	100.54(3)	C4-C3-C2	120.5(10)	Br2 ³ -Pb1-Br1	97.677(10)	C2-C3-C4
Br1 ² -Pb1-Br3 ²	81.89(3)	C2-C1-C6	119.7(9)	119.1(5)			
Br3-Pb1-Br2 ¹	82.01(3)	C5-C4-C3	120.0(9)	Br21-Pb1-Br1	82.323(10)	C2-C3-C5
Br3 ² -Pb1-Br2 ¹	104.72(3)	N1-C7-C6	128.4(10)	134.2(5)			
Br3-Pb1-Br1	86.45(3)	C7-N1-C8	123.9(9)	Br21-Pb1-Br11	97.677(10)	C4-C3-	C5
Br3-Pb1-Br1 ²	90.93(3)	N1-C8-C9	112.6(8)	106.7(5)			
Br3-Pb1-Br3 ²	170.80(3)	C10-C9-C8	113.0(9)	Br2-Pb1-Br2 ¹	179.999(11)	C6-C7-0	C8 99.6(8)
¹ -X,1-Y,2-Z; ² +X,1/2+Y,2-Z; ³ -X,1/2-Y,+Z			Br2-Pb1-Br2 ³	85.450(15)	C5-N1-C6	
				127.3(8)			
				Br2 ² -Pb1-Br2 ³	180.0	N1-C5-C	3 123.7(7)
		Br2 ² -Pb1-Br2 ¹	85.450((15)	N1-C6-C7		
				123.1(8)			
				Br23-Pb1-Br21	94.550(15)	1	

¹-X,1-Y,2-Z;²+X,1/2+Y,2-Z;³-X,1/2-Y,+Z;⁴-X,3/2-Y,+Z