Supplemental Information

Understanding the Stabilization Effect of the Hydrous IrO$_x$ Layer formed on Iridium Oxide Surface during the Oxygen Evolution Reaction in Acid

Jun Qi, Muzhi Yang, Huiyan Zeng, Yabin Jiang, Long Gu, Wenguang Zhao, Zhongfei Liu, Tianhui Liu, Chunzhen Yang*, Rui Si*

School of Materials, Sun Yat-Sen University, Shenzhen, 518107, P. R. China

Sun Yat-Sen University Instrumental Analysis & Research Center, Guangzhou, 510275, P. R. China

Peking University Shenzhen Graduate School, Shenzhen, 518107, P. R. China

Synchrotron Radiation Facility Division, Institute of Advanced Science Facilities (IASF), Shenzhen, 518108, P. R. China

*Correspondence to: yangchzh6@mail.sysu.edu.cn; sirui@mail.sysu.edu.cn
Figure S1 Evolution of Tafel curves of BaIrO$_3$ (a) and SrIrO$_3$ (b) after certain number of electrochemical cycling.
Figure S2 Cyclic voltammograms and charging currents for DL capacitance measurements in BaIrO$_3$. The electric double-layer capacitance was calculated by fitting the curve of charging current (at 1.08 V vs RHE) and scan rate.
The electric double-layer capacitance (C_{dl}) was calculated from the scan-rate dependent CVs in non-Faradaic potential region with various scan rates.\(^1\) The C_{dl} was calculated according to the equation $i_c = vC_{dl}$, where C_{dl} is the double-layer capacitance (mF), v is the scan rate (mV s\(^{-1}\)), i_c is charging current (mA). Thus, a plot of i_c as a function of v yields a straight line with a slope equal to C_{dl}.

Figure S3. Cyclic voltammograms and charging currents for DL capacitance measurements in SrIrO\(_3\). The electric double-layer capacitance was calculated by fitting the curve of charging current (at 0.95V vs RHE) and scan rate.
Figure S4. CV profiles of 1st, 50th, 100th, 150th cycle for BaIrO$_3$ and SrIrO$_3$ with currents normalized by the ECSA.
Figure S5. Comparison of the Ir L_{III}-edge EXAFS curves for the pristine and reacted BaIrO$_3$ (a) and SrIrO$_3$ (b) with a k range of $3 \leq k \leq 10$ Å$^{-1}$. These data are k^2-weighted and not phase-corrected.
Figure S6. TEM images of reacted BaIrO$_3$. (a) A typical oxide particle after electrochemical cycling, (b) high-resolution TEM image showing the crystalline structure at the exposed region.
Figure S7. (a) Reaction setup of BaIrO$_3$ catalyst after holding at 1.6 V vs. RHE for 12 hours, (b) corresponding UV-Vis spectrum of the reacted H$_2$SO$_4$ electrolyte.
Figure S8. The optical photos of the initial (a) and reacted BaIrO$_3$ (b) after holding at 1.7 V vs RHE taken from the operando Raman experiments. Insets are the corresponding Raman spectra.
Figure S9. The Raman spectra of pristine and reacted IrO\textsubscript{2} after holding at 1.6 V vs RHE for 12h.
Figure S10. Cyclic voltammograms of BaIrO$_3$ and SrIrO$_3$ at different scan rates in 0.5 M H$_2$SO$_4$.
Figure S11 Evolution of XRD patterns of pristine BaIrO$_3$ and reacted BaIrO$_3$ after holding at 1.3 and 1.4 V vs. RHE in 0.5 M H$_2$SO$_4$ solution for 12 hours.
Figure S12. PDOS of BaIrO$_3$ as calculated by DFT in which the Fermi level is 0 eV.
Table 1. The parameters from the Rietveld refinement of BaIrO$_3$ and SrIrO$_3$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Space group</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>α(°)</th>
<th>β(°)</th>
<th>γ(°)</th>
<th>V$_{\text{unit-cell}}$ (Å3)</th>
<th>R$_p$</th>
<th>R$_{wp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaIrO$_3$</td>
<td>C 1 2/m 1</td>
<td>10.011</td>
<td>5.763</td>
<td>15.135</td>
<td>90</td>
<td>103.18</td>
<td>90</td>
<td>850.15</td>
<td>7.9</td>
<td>10.1</td>
</tr>
<tr>
<td>SrIrO$_3$</td>
<td>C 1 2/c 1</td>
<td>5.620</td>
<td>9.620</td>
<td>14.169</td>
<td>90</td>
<td>93.21</td>
<td>90</td>
<td>762.73</td>
<td>6.2</td>
<td>8.0</td>
</tr>
</tbody>
</table>
Reference