Supporting Information

Orange/Cyan Emissive Sensors of Sb³⁺ for Probing Water via Reversible

Phase Transformation in Rare-Earth-Based Perovskite Crystals

Yexin Huang,^a Yuexiao Pan,^a* Chengdong Peng,^a Yihong Ding,^a Hongzhou Lian,^b Liyi Li,^c* and Jun Lin^b*

^aKey Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.

^bState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

^cInnovative Drug and Imaging Agent R&D Center, Research Institute of Qsinghua, Pearl River Delta, Guangzhou, P. R. China.

2. Experimental

2.5. Characterization

The single-crystal X-ray diffraction data were collected using a SMART APE II DUO X-ray four-circle single-crystal diffractometer (Bruker) equipped with a CCDdetector, a graphite monochromator, and a Cu K radiation source. The powder X-ray diffraction (PXRD) patterns of the crystals were collected on a Bruker (Karlsruhe, Germany) D8 Advance XRD with graphite monochromatized Cu K α radiation (λ = 0.15418 nm) in the two degrees range from 10-80°. High-resolution transmission electron microscopy (HRTEM) observation was performed by using a JEOL 2100F high-resolution transmission electron microscope using an accelerating voltage of 200 kV with an attached energy-dispersive x-ray energy dispersive spectrum spectrometer (EDS). The chemical composition on the surface of the particles was analyzed by using x-ray photoelectron spectra (XPS) conducted on a ESCALAB 250Xi versa probe spectrometer (analyzer resolution ≤ 0.5 eV) with a monochromatic of Al K α radiation (hv = 486.6 eV). The photoluminescence (PL) excitation and PL emission spectra were recorded on a FluoroMAX-4-TCSPC fluorescence spectrophotometer (Horiba Jobin Yvon Inc). The PL decay curves were recorded on an FLS980 spectrometer (Edinburgh).

2.6. Computational Methodology

The first-principles density functional theory (DFT) computation was implemented by Vienna Ab initio Simulation Package (VASP).¹ Generalized gradient approximation (GGA) in the Perdew Burke Ernzerhof (PBE) form was employed for the exchange-correlation functional energies.² The cut-off energy was set at 350 eV for the plane wave basis set. For undoped samples, a $2 \times 2 \times 2$ G-centered mesh was selected for Brillouin-zone K-point sampling in the unit cell. For Sb³⁺-doped samples, a $1 \times 1 \times 1$ G-centered mesh was used in the supercell (i.e., $2 \times 2 \times 1$ primitive cells). The energy of the system and forces on each atom were converged to 10–5 eV and 0.003 eV/Å.

- 1 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 1996. **54**. 11169.
- 2 M. Ernzerhof and G. E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional, J. Chem. Phys., 1999, **110**, 5029-5036.

Fig. S1 (a) XPS full spectrum of Rb₂ScCl₅·H₂O:Sb³⁺, (b-e) XPS spectra of the elements Rb, Sc, Cl,

O, and Sb in $Rb_2ScCl_5 \cdot H_2O:Sb^{3+}$.

Fig. S2 Full PL excitation spectrum ($\lambda_{em} = 600 \text{ nm}$) of $Rb_2ScCl_5 \cdot H_2O:Sb^{3+}$.

Fig. S3 (a, b) PL decay curves of $Rb_2ScCl_5 \cdot H_2O:x\%Sb^{3+}$ with Sb^{3+} content increasing.

Fig. S4 Temperature-dependent PL emission spectra of Rb₂ScCl₅·H₂O:Sb³⁺ during the cooling

cycle.

Fig. S5 Normalized PL excitation ($\lambda_{em} = 600 \text{ nm}$) and emission spectra ($\lambda_{ex} = 340 \text{ nm}$) of Rb₂ScCl₅·H₂O:Sb³⁺ at 77 K (blue line) and 298 K (red line).

Fig. S6 CIE chromaticity coordinates of Rb₂ScCl₅·H₂O:Sb³⁺ after treatment at different

temperatures.

Fig. S7 Thermogravimetry/differential thermal analysis (TG-DTA) curves of Rb₂ScCl₅·H₂O:Sb³⁺

measured on Netzsch STA 449 C at a heating rate of 10 K min⁻¹.

Fig. S8 (a) PL excitation ($\lambda_{em} = 500 \text{ nm}$) and emission spectra ($\lambda_{ex} = 340 \text{ nm}$) of Rb₃ScCl₆:Sb³⁺, (b)

PL decay curve of $Rb_3ScCl_6:Sb^{3+}$.

Fig. S9 CIE chromaticity coordinates of $Rb_3ScCl_6:Sb^{3+}$ with aging time between 1-60 min (finally become to be $Rb_2ScCl_5 \cdot H_2O:Sb^{3+}$).

Fig. S10 XRD patterns of (1#) original $Rb_2ScCl_5 \cdot H_2O:Sb^{3+}$, and the $Rb_3ScCl_6:Sb^{3+}$ (2#) exposed in air for 1 h and (3#) treated with 2 mL hydrochloric acid for 3 s.

Fig. S11 (a) Electroluminescence (EL) spectrum of the WLED based on $Rb_2ScCl_5 \cdot H_2O:Sb^{3+}$ at 40

mA drive current, (b) CIE color coordinates of the WLED in operation.

Fig. S13 Calculated electronic band structure (left) and DOS (right) of Rb₂ScCl₅·H₂O crystal.

Fig. S14 (a) The conduction band minimum (CBM) and (b) the valence band maximum (VBM) associated charge densities of $Rb_3ScCl_6:Sb^{3+}$ crystal.

Fig. S15 (a) The conduction band minimum (CBM) and (b) the valence band maximum (VBM) associated charge densities of $Rb_2ScCl_5 \cdot H_2O:Sb^{3+}$ crystal.

Fig. S16 Schematic illustration of the STE emission in Sb^{3+} doped $Rb_2ScCl_5 \cdot H_2O$ (600 nm) and Rb_3ScCl_6 (500 nm).

Compound	Rb ₂ ScCl ₅ ·H ₂ O			
Formula weight	182.89g/mol			
Temperature	298 K			
Crystal system	Orthorhombic			
Space group	Pnma			
a/Å	14.003			
b/Å	10.045			
c/Å	7.246			
α/°	90			
β/°	90			
γ/°	90			
Volume/Å ³	1019.23			
ρ _{cal}	2.979			
F(000)	840			
	$-16 \le h \le 15$			
Limiting indices	$-11 \le k \le 10$			
	$-8 \le 1 \le 8$			
θ range/deg	2.91 to 25.00			
Reflections collected	4199			
Independent reflections	841[R(int) = 0.0303]			
Absorption coefficient / mm ⁻¹	0.0108			
Data /restraints / parameters	951/3/56			
Goodness-of-fit on F ²	1.041			
Final R indices [I>2sigma(I)]	R1 = 0.0202			
	wR2 = 0.0610			
R indices (all data)	R1 = 0.0245			
	wR2 = 0.0627			

 Table S1 Single crystal X-ray diffraction data of Rb₂ScCl₅·H₂O single crystals.

Table S2 Comparison of Bond Length and Angles of $[ScCl_5H_2O]^{2-}$ in $Rb_2ScCl_5 \cdot H_2O$ and $Cs_2ScCl_5 \cdot H_2O.^{24}$

	Bond Length(Å))	Angle (deg)		
	Sc-Cl(1)	2.4873(15)		93.412(3)	
	Sc-Cl(2)	2.4702(8)			
Rb ₂ ScCl ₅ ·H ₂ O	Sc-Cl(3)	2.4702(9)	Cl-Sc-Cl		
	Sc-Cl(4)	2.4590(15)			
	Sc-Cl(5)	2.4510(14)	-		
	Sc-O	2.1710(3)	Cl-Sc-O	86.591(3)	
	Sc-Cl(1)	2.4822(8)			
Cs ₂ ScCl ₅ ·H ₂ O	Sc-Cl(2)	2.4845(5)		94.502(17)	
	Sc-Cl(3)	2.4845(5)	Cl-Sc-Cl		
	Sc-Cl(4)	2.4589(9)			
	Sc-Cl(5)	2.4593(8)			
	Sc-O	2.1793(3)	Cl-Sc-O	85.498(17)	

Table S3 The decay of $Rb_2ScCl_5 \cdot H_2O:x\%Sb^{3+}$ (x = 0.5, 1, 2, 3, 5, 8, 10, 15, 20).

Concentration	0.5	1	2	3	5	8	10	15	20
(Sb ³⁺ /mol%)									
Decay (ns)	1.06	0.49	0.48	0.45	0.44	0.38	0.37	0.36	0.34

Perovskites	PLE (nm)	PL (nm)	PLQY (%)	FWHM (nm)	Year	Reference	
Cs ₂ InBr ₅ ·H ₂ O	355	695	33	/	2019	4	
$Cs_2InCl_5 \cdot H_2O:Sb^{3+}$	/	560	90	/			
$Rb_2InCl_5 \cdot H_2O:Sb^{3+}$	/	600	90	/	2020	38	
$Cs_3InCl_6:Sb^{3+}$	/	507	85	/			
Rb ₃ InCl ₆ :Sb ³⁺	/	497	95	/			
$Cs_2InCl_5 \cdot H_2O:Sb^{3+}$	344	610	73	164			
$Cs_2InBr_5{}{\cdot}H_2O{:}Sb^{3+}$	357	692	33	207	2020	22	
Rb_2InCl_5 ·H ₂ O:Sb ³⁺	310	678	51	211			
$Rb_2InBr_5 \cdot H_2O:Sb^{3+}$	395	766	18	160			
$Rb_3InCl_6:Sb^{3+}$	280	522	/	129	2020	5	
$Cs_2InCl_5{}^{\cdot}H_2O{}^{\cdot}Sb^{3+}$	340	580	95	/	2020	12	
$Cs_2InBr_5{}^{\cdot}H_2O{}^{\cdot}Sb^{3+}$	354	630	13	/			
$Cs_2InCl_5{}^{\cdot}H_2O{}^{\cdot}Sb^{3+}$	325	596	75	/	2022	13	
Cs3InCl ₆ :Sb ³⁺	322	512	52	/			
	250	490	25	158			
$Cs_2ScCl_5 \cdot H_2O$	280	565	2	/	2022	24	
	310	585	1	155			
$Cs_2ScCl_5{\cdot}H_2O{:}Sb^{3+}$	310	585	≈100	/			
Rb ₂ ScCl ₅ ·H ₂ O	/	/	/	/			
Rb ₂ ScCl ₅ ·H ₂ O:Sb ³⁺	340	600	99	141	This work		
$Rb_3ScCl_6:Sb^{3+}$	340	500	96	102			

= Cl, Br) and A_3BX_6 (A = Cs, Rb, B = In, Sc and X = Cl, Br).