Supporting Information

Synergistic copper nanoparticles and adjacent single atoms on biomass-derived N-doped carbon toward overall water splitting

Authors:

Wenjun Zhang¹, Ruoqi Liu¹, Ziyi Fan¹, Huiming Wen¹, Yu Chen², Ronghe Lin^{3,4}, Yinlong Zhu⁵, Xiaofei Yang¹, and Zupeng Chen¹*

Affiliation:

¹Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

²Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia.

³Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.

⁴Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.

⁵Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

*Address correspondence to: czp@njfu.edu.cn

Fig. S1. (a) Ball and stick illustration of $Cu_3(PyCA)_3 \cdot H_2O$ complex in single crystal form. (b) PXRD pattern and (c) FT-IR spectrum of $Cu_3(PyCA)_3 \cdot H_2O$. (d) TG curve of $Cu_3(PyCA)_3 \cdot H_2O$ measured in N₂ atmosphere.

Fig. S2. (a) XRD patterns, (b) Raman spectra, (c) N_2 adsorption/desorption isotherms, and (d) the corresponding pore-size distribution curves of BDC-*x* prepared at five different temperatures (*i.e.*, 500, 600, 700, 800, and 900 °C).

Fig. S3. (a,b) SEM, and (c,d) TEM images of BDC-700.

Fig. S4. (a) The dependency of the N contents doped in BDNCs on the mass ratio between BDC-700 and melamine. (b) OER polarization curves of Ni foam, BDC-700, and BDNC with different N contents supported on Ni foams.

Fig. S5. Cu K-edge XANES spectra of Cu_{1+n} /BDNC, Cu foil, and CuPc samples.

Fig. S6. CV curves of (a) Ni foam, (b) $Cu_{1+n}/BDNC$, (c) $Cu_n/BDNC$, and (d) $Cu_1/BDNC$ at different scanning rates.

Fig. S7. PXRD patterns of Cu_{1+n} /BDNC with Cu contents of 0.5 and 2.3 wt.%.

Fig. S8. (HR)TEM images of (a-c) $Cu_{1+n}/BDNC$ (0.5 wt.% Cu) and (d-f) $Cu_{1+n}/BDNC$ (2.3 wt.% Cu).

Fig. S9. (a) XPS survey, (b) Cu 2p, and (c) N 1s spectra of $Cu_{1+n}/BDNC$ (0.5 wt.% Cu).

Fig. S10. (a) XPS survey, (b) Cu 2p, and (c) N 1s spectra of $Cu_{1+n}/BDNC$ (2.3 wt.% Cu).

Fig. S11. LSV curves of Cu_{1+n} /BDNC on GCE for electrochemical OER testing.

Fig. S12. (a) TEM, (b) HRTEM, and (c) HAADF-STEM images, (d) XPS survey, (e) Cu 2p, and (f) N 1s spectra of the used $Cu_{1+n}/BDNC$ after 10 h OER test.