Electronic Supplementary Information

{Gd₄₄Ni₂₂}: A Gigantic 3*d*-4*f* Wheel-like Cluster with Large

Magnetocaloric Effect

Zixiu Lu,^{ab} Zhu Zhuo,^{cd} Wei Wang,^{cd*} You-Gui Huang,^{cd*} and Maochun

Hong^{abd}

^a Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China

^b School of Rare Earth, University of Science and Technology of China, Hefei, China.

° CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and

Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on

the Structure of Matter, Chinese Academy of Sciences, China

^d Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen

Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences,

Xiamen, Fujian 361021, China;

^e Fujian Science & Technology Innovation Laboratory for Optoelectronic Information

of China, Fuzhou, 350108

*Corresponding author:

Wei Wang: wangwei@fjirsm.ac.cn;

You-Gui Huang: yghuang@fjirsm.ac.cn.

Contents

1. Materials and Measurements

1.1 Chemicals and Physical Measurements.

1.2 Synthesis of [Gd₄₄Ni₂₂(CO₃)₁₆(NO₃)₄(H₂O)₅₈(µ₃-OH)₇₆(µ₂-O)₆(IDA)₂₈

 $(H_2 dmpa)_2] \cdot (H_2 O)_x (1, x \approx 118).$

1.3 X-ray Crystallography.

2. Supplementary Tables.

 Table S1. Crystallographic Data and Structure Refinements for 1.

Table S2. Selected bond lengths [Å] for 1.

Table S3. Selected BVS calculations for Ni, C (in CO₃^{2–}), N (in NO₃[–]), and O atoms

in **1**.

Table S4. Magnetic entropy changes for selected high-nuclearity Gd^{III} -based cluster materials.

3. Supplementary Figures

Figure S1 SEM images of 1.

Figure S2 The coordination mode of Gd^{3+} and Ni^{2+} in 1.

Figure S3 (a) The space-filling view of 1; (b) wireframe view of the packing mode of

1 aggregation.

Figure S4 Calculated and experimental XRD patterns for **1**. The purple curve is the calculated one obtained from single-crystal X-ray structure analysis.

Figure S5 FTIR spectra of 1.

Figure S6 The thermogravimetric (TG) analysis and differential scanning calorimetry (DSC) curve of **1**.

Figure S7 Plots of temperature dependence of $\chi_m T$ vs *T* and χ_M^{-1} vs T (inset) of wheel-like {Gd₄₄Ni₂₂} cluster.

Figure S8 Experimental magnetization curve of 1 at 2 K.

1. Materials and Measurements

1.1 Chemicals and Physical Measurements.

Commercial $Gd(NO_3)_3 \cdot 6H_2O$ (Adamas Co., Ltd., >99.0 chemicals, %). Ni(NO₃)₂·6H₂O (Adamas Co., Ltd., 99.99 %), NaOH (Greagent Co., Ltd., 96.0 %), 3-Hydroxy-2-(hydroxymethyl)-2-methylpropanoic acid (H₃dmpa, Bide Co., Ltd., 95.0 %) and Iminodiacetic acid (IDA, Bide Co., Ltd., 98.0 %) were used as received without further purification. NaOH (3.0 mol/L, 250 ml) was prepared using conventional methods. Infrared spectrum was recorded on a Thermo Nicolet iS 50 spectrophotometers. Thermogravimetric analysis (TGA) curve was carried out under nitrogen with a heating rate of 10 °C/min using Mettler Telodo TGA/DSC-1 thermal analyzer. Powder X-ray diffraction data (PXRD) was recorded on a Miniflex 600 powder X-ray diffractometer (Cu $K\alpha$, $\lambda = 1.54184$ Å) in the 2θ range of $3-50^{\circ}$ at room temperature. Magnetic susceptibility was measured using a Quantum Design MPMS superconducting quantum interference device (SQUID). Diamagnetic corrections were made with Pascal's constants. The magnetic susceptibility was performed in 2-300 K under a dc field of 1000 Oe. The isothermal magnetization was measured at 2-10 K in applied field of 0-7 T. The M-H curves at each temperature were measured with step size of 1000 Oe during 0-2 T and that of 2000 Oe during 2-7 T.

1.2 Synthesis of $[Gd_{44}Ni_{22}(CO_3)_{16}(NO_3)_4(H_2O)_{58}(\mu_3-OH)_{76}(\mu_2-O)_6(IDA)_{28}$ $(H_2dmpa)_2] \cdot (H_2O)_x (1, x \approx 118).$

Hydroxy-2-(hydroxymethyl)-2-methylpropanoic acid (H₃dmpa, 0.1251 g, 0.93 mmol), Iminodiacetic acid (IDA, 0.1290 g, 0.97 mmol), $Gd(NO_3)_3 \cdot 6H_2O$ (1.0769 g, 2.39 mmol), and $Ni(NO_3)_2 \cdot 4H_2O$ (0.6983 g, 2.40 mmol) were dissolved in the 10 ml H₂O. This solution was stirred for 24 h and then a freshly prepared NaOH solution (aq. 3.0 M) drop wised to the mixture to the point of incipient but permanent precipitation (PH \approx 6). The mixture solution was filtered and sealed in a 25 mL Teflon-lined stain less steel vessel and heated at 140 °C for 4 days. At a rate of 5 °C/h, the system was allowed to cool to room temperature. Evaporation of the filtrate in a beaker under ambient conditions afforded the block-shaped light green crystals of **1** after about 20 days (yield 50 % based on Gd³⁺). Elemental analysis calcd (%) for **1**: C 9.73, H 3.54, N 2.79; Found: C 9.62, H 2.60, N 2.69. IR (KBr, cm-1): 3241 (m), 1577 (s), 1504 (w), 1458 (w), 1412 (s), 1316 (w), 1087 (w), 932 (w), 827 (w), 717 (w).

1.3 X-ray Crystallography.

Single-crystal X-ray diffraction data of **1** were collected at 200(2) K on the Bruker SMART diffractometer with monochromatic Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods and all non-H atoms were subjected to anisotropic refinement by full-matrix least-squares refinement on F^2 using using SHELXL–2018 within Olex^{2,1,2} All non-hydrogen atoms were refined anisotropically. The hydrogen atoms of organic ligand were generated geometrically (C–H = 0.96 Å, N–H = 0.90 Å). The contribution of the disordered solvent molecules was subtracted from the reflection data by the SQUEEZE method as implanted in PLATON program.^{3–6} There are 39 disordered water molecules per formula were removed by SQUEEZE in the refinement, but accurately confirmed by TG, elemental analyses and charge balance. Refinement parameters and crystallographic data for **1** are shown in Table S1–S2. CCDC-2208968 contains the supplementary crystallographic data. This data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

2. Supplementary Tables

Complex	$\{Gd_{44}Ni_{22}\}$ (1)
formula	$Gd_{44}Ni_{22}C_{130}N_{32}O_{314}H_{356}$
fw	15603.07
crystal system	Monoclinic
space group	$P2_{1}/n$
<i>a</i> , Å	20.2655(2)
<i>b</i> , Å	34.6370(6)
<i>c</i> , Å	40.1162(4)
α , deg	90
β , deg	91.9750(10)
γ, deg	90
<i>V</i> , Å ³	28142.3(6)
Ζ	2
D_c / g cm ⁻³	1.841
<i>Т,</i> К	200.00
<i>F</i> (000)	145608.0
reflections collected /	182894
unique	/51512
R _{int}	0.0909
GOF on F^2	1.102
$R_1, wR_2 I > 2\sigma(I)^a$	0.0668, 0.1892
R_1 , wR_2 (all data)	0.0870, 0.1991
CCDC Number	2208968

 Table S1. Crystallographic Data and Structure Refinements for 1.

 $[a]R_1 = \Sigma ||F_o| - |F|| / \Sigma |F_o| \text{ and } wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2} \text{ for } F_o^2 > 2\sigma (F_o^2)$

Table S2. Selected bond lengths A for]	Table S2.	Selected	bond	lengths	[Å]	for	1.
---	-----------	----------	------	---------	-----	-----	----

Gd(1)-O(4)	2.390(6)	Gd(12)-O(60)	2.539(7)	Ni(1)-N(8)	2.038(10)
Gd(1)-O(6)	2.450(8)	Gd(12)-O(80)	2.417(7)	Ni(2)-O(64)	2.017(8)
Gd(1)-O(14)	2.393(7)	Gd(12)-O(82)	2.348(6)	Ni(2)-O(94)	2.056(8)
Gd(1)-O(18)	2.388(7)	Gd(12)-O(108)	2.293(6)	Ni(2)-O(132)	2.032(8)
Gd(1)-O(24)	2.375(6)	Gd(12)-O(114)	2.540(7)	Ni(2)-N(17)	2.102(11)
Gd(1)-O(40)	2.433(7)	Gd(12)-O(134)	2.588(8)	Ni(2)-O(127)	2.038(10)
Gd(1)-O(46)	2.444(7)	Gd(12)-O(95)	2.425(8)	Ni(2)-O(37)	2.058(10)

Gd(1)-O(82)	2.405(7)	Gd(13)-O(44)#1	2.482(7)	Ni(3)-O(32)	2.046(7)
Gd(1)-O(104)	2.425(7)	Gd(13)-O(76)	2.355(8)	Ni(3)-O(50)	2.041(9)
Gd(2)-O(62)	2.672(8)	Gd(13)-O(78)	2.442(7)	Ni(3)-O(92)	2.025(9)
Gd(2)-O(84)	2.358(7)	Gd(13)-O(100)#1	2.487(8)	Ni(3)-O(136)	2.052(7)
Gd(2)-O(116)	2.381(8)	Gd(13)-O(41)#1	2.433(8)	Ni(3)-O(81)	2.045(7)
Gd(2)-O(118)	2.319(8)	Gd(13)-O(99)	2.390(8)	Ni(3)-N(16)	2.082(9)
Gd(2)-O(128)	2.430(8)	Gd(13)-O(103)	2.483(9)	Ni(4)-O(10)	2.042(7)
Gd(2)-O(140)	2.707(8)	Gd(13)-O(107)	2.416(10)	Ni(4)-O(54)	2.071(7)
Gd(2)-O(83)	2.308(8)	Gd(13)-O(117)	2.659(12)	Ni(4)-O(96)	1.991(8)
Gd(2)-O(89)	2.433(8)	Gd(14)-O(38)	2.386(7)	Ni(4)-O(102)	2.095(8)
Gd(2)-O(129)	2.499(14)	Gd(14)-O(66)	2.457(8)	Ni(4)-O(79)	2.045(8)
Gd(3)-O(22)	2.540(7)	Gd(14)-O(98)	2.431(8)	Ni(4)-N(6)	2.039(10)
Gd(3)-O(36)#1	2.344(8)	Gd(14)-O(138)	2.496(7)	Ni(5)-O(100)	2.028(8)
Gd(3)-O(76)	2.504(8)	Gd(14)-O(142)	2.334(6)	Ni(5)-O(112)	2.058(8)
Gd(3)-O(78)	2.370(7)	Gd(14)-O(5)	2.501(7)	Ni(5)-O(41)	2.032(9)
Gd(3)-O(150)	2.316(8)	Gd(14)-O(43)	2.262(7)	Ni(5)-O(27)	2.030(9)
Gd(3)-O(154)	2.393(7)	Gd(14)-O(23)	2.421(8)	Ni(5)-O(29)	2.055(10)
Gd(3)-O(3)	2.421(9)	Gd(14)-O(49)	2.610(8)	Ni(5)-N(5)	2.111(11)
Gd(3)-O(25)#1	2.401(9)	Gd(15)-O(108)	2.417(8)	Ni(6)-O(28)	2.102(7)
Gd(3)-O(143)	2.94(2)	Gd(15)-O(134)	2.373(7)	Ni(6)-O(30)	2.080(8)
Gd(4)-O(1)	2.493(7)	Gd(15)-O(91)	2.497(8)	Ni(6)-O(74)	2.026(8)
Gd(4)-O(4)	2.433(6)	Gd(15)-O(51)	2.399(8)	Ni(6)-O(138)	2.055(7)
Gd(4)-O(16)	2.528(7)	Gd(15)-O(111)	2.444(8)	Ni(6)-O(142)	2.006(7)
Gd(4)-O(32)	2.350(8)	Gd(15)-O(61)	2.472(9)	Ni(6)-N(4)	2.077(10)
Gd(4)-O(34)	2.495(8)	Gd(15)-O(63)	2.425(9)	Ni(7)-O(26)	2.045(7)
Gd(4)-O(40)	2.354(7)	Gd(15)-O(2)	2.388(11)	Ni(7)-O(72)	2.069(8)
Gd(4)-O(88)	2.449(7)	Gd(15)-O(139)	2.587(15)	Ni(7)-O(80)	2.036(7)
Gd(4)-O(152)	2.485(7)	Gd(16)-O(20)#1	2.333(7)	Ni(7)-O(86)	2.026(8)
Gd(4)-O(81)	2.446(7)	Gd(16)-O(22)	2.345(7)	Ni(7)-O(13)	2.094(7)
Gd(5)-O(110)	2.462(9)	Gd(16)-O(36)#1	2.457(7)	Ni(7)-N(14)	2.156(12)
Gd(5)-O(118)	2.361(8)	Gd(16)-O(56)#1	2.437(7)	Ni(8)-O(60)	2.037(7)
Gd(5)-O(128)	2.294(9)	Gd(16)-O(64)	2.424(7)	Ni(8)-O(82)	1.983(7)
Gd(5)-O(31)	2.204(13)	Gd(16)-O(94)	2.440(7)	Ni(8)-O(104)	2.046(7)
Gd(5)-O(129)	2.881(13)	Gd(16)-O(126)#1	2.529(7)	Ni(8)-O(144)	2.089(7)
Gd(5)-O(71)	2.275(17)	Gd(16)-O(157)#1	2.550(7)	Ni(8)-O(148)	2.064(8)
Gd(5)-O(151)	2.35(3)	Gd(16)-O(101)	2.483(9)	Ni(8)-N(1)	2.071(9)
Gd(5)-O(19)	2.72(2)	Gd(17)-O(78)	2.428(7)	Ni(9)-O(66)	2.062(7)
Gd(6)-O(10)	2.435(8)	Gd(17)-O(154)	2.422(7)	Ni(9)-O(98)	2.009(8)
Gd(6)-O(20)	2.411(7)	Gd(17)-O(99)	2.361(8)	Ni(9)-O(87)	2.029(9)
Gd(6)-O(38)	2.372(6)	Gd(17)-O(105)	2.377(10)	Ni(9)-O(97)	2.063(8)
Gd(6)-O(56)	2.400(7)	Gd(17)-O(113)#1	2.352(10)	Ni(9)-O(59)	2.067(8)
Gd(6)-O(58)	2.412(7)	Gd(17)-O(135)	2.519(13)	Ni(9)-N(11)	2.117(10)
Gd(6)-O(68)	2.351(7)	Gd(17)-O(143)	2.387(15)	Ni(10)-O(20)	2.014(7)
Gd(6)-O(74)	2.443(7)	Gd(17)-O(145)	2.412(14)	Ni(10)-O(58)	2.068(8)
Gd(6)-O(96)	2.410(7)	Gd(18)-O(1)	2.314(7)	Ni(10)-O(70)	2.063(8)
Gd(6)-O(142)	2.420(7)	Gd(18)-O(42)	2.422(7)	Ni(10)-O(157)	2.008(8)
Gd(7)-O(98)	2.383(7)	Gd(18)-O(62)	2.494(7)	Ni(10)-O(85)#1	2.015(8)
Gd(7)-O(110)	2.333(8)	Gd(18)-O(84)	2.364(7)	Ni(10)-N(10)	2.071(10)
Gd(7)-O(116)	2.363(7)	Gd(18)-O(90)	2.468(8)	Ni(11)-O(18)	1.996(6)

Gd(7)-O(118)	2.401(8)	Gd(18)-O(152)	2.564(7)	Ni(11)-O(46)	2.053(8)
Gd(7)-O(146)	2.472(9)	Gd(18)-O(156)	2.533(9)	Ni(11)-O(106)	2.077(9)
Gd(7)-O(5)	2.444(7)	Gd(18)-O(89)	2.406(9)	Ni(11)-O(122)	2.029(8)
Gd(7)-O(93)	2.443(7)	Gd(18)-N(13)	2.561(10)	Ni(11)-O(45)	2.048(8)
Gd(7)-O(97)	2.434(8)	Gd(19)-O(119)	2.427(10)	Ni(11)-N(12)	2.071(9)
Gd(8)-O(14)	2.450(7)	Gd(19)-O(15)	2.592(12)	Gd(2)-Gd(21)	3.6313(14)
Gd(8)-O(18)	2.355(7)	Gd(19)-O(121)	2.372(11)	Gd(2)- $Gd(5)$	3.6175(13)
Gd(8)-O(22)	2.356(7)	Gd(19)-O(125)	2.357(10)	Gd(3)-Gd(13)	3.9330(8)
Gd(8)-O(64)	2.412(7)	Gd(19)-O(67)	2.455(11)	Gd(3)-Gd(17)	3.7495(8)
Gd(8)-O(122)	2.549(7)	Gd(19)-O(17)	2.498(13)	Gd(7)- $Gd(2)$	3.7546(8)
Gd(8)-O(130)	2.546(7)	Gd(19)-O(69)	2.428(14)	Gd(7)- $Gd(5)$	3.8826(14)
Gd(8)-O(132)	2.474(7)	Gd(19)-O(35)	2.480(13)	Gd(8)-Gd(16)	3.8300(9)
Gd(8)-O(150)	2.454(7)	Gd(19)-O(73)	2.414(13)	Gd(11)-Gd(7)	3.8326(7)
Gd(8)-O(55)	2.462(9)	Gd(20)-O(72)	2.387(8)	Gd(11)- $Gd(2)$	3.6592(8)
Gd(9)-O(43)	2.426(9)	Gd(20)-O(80)	2.400(7)	Gd(11)- $Gd(5)$	3.9706(14)
Gd(9)-O(49)	2.348(7)	Gd(20)-O(84)	2.343(7)	Gd(13)-Gd(17)	3.8977(9)
Gd(9)-O(109)	2.469(8)	Gd(20)-O(90)	2.331(7)	Gd(18)-Gd(20)	3.8247(7)
Gd(9)-O(7)	2.467(10)	Gd(20)-O(114)	2.430(7)	Gd(18)- $Gd(2)$	3.6506(7)
Gd(9)-O(57)	2.382(9)	Gd(20)-O(83)	2.384(8)	Gd(18)-Gd(21)	3.9519(14)
Gd(9)-C(64)	2.893(15)	Gd(20)-O(21)	2.463(9)	Gd(20)- $Gd(2)$	3.7564(8)
Gd(9)-O(131)	2.481(13)	Gd(20)-O(11)	2.414(7)	Gd(20)-Gd(21)	3.8920(15)
Gd(9)-O(33)	2.445(12)	Gd(21)-O(90)	2.455(8)	Gd(22)- $Gd(3)$	3.9325(8)
Gd(9)-O(147)	2.377(14)	Gd(21) -O(83)	2.369(8)	Gd(22)- $Gd(13)$	3.7454(9)
Gd(10)-O(8)	2.488(7)	Gd(21) -O(89)	2.244(8)	Gd(22)-Gd(17)	3.8591(8)
Gd(10)-O(44)	2.506(8)	Gd(21) -O(65)	2.198(14)	Gd(1)-Ni(1)	3.4641(14)
Gd(10)-O(54)	2.503(8)	Gd(21) -O(141)	2.277(19)	Gd(1)-Ni(8)	3.4572(16)
Gd(10)-O(68)	2.471(7)	Gd(21) -O(149)	2.665(17)	Gd(1)-Ni(11)	3.4525(15)
Gd(10)-O(96)	2.378(7)	Gd(21) -O(75)	2.300(3)	Gd(4)-Ni(1)	3.5241(15)
Gd(10)-O(100)	2.367(7)	Gd(21) -O(153)	2.590(3)	Gd(4)-Ni(3)	3.4548(14)
Gd(10)-O(112)	2.437(7)	Gd(22)-O(16)	2.481(7)	Gd(6)-Ni(4)	3.4656(15)
Gd(10)-O(120)	2.480(8)	Gd(22)-O(32)	2.474(8)	Gd(6)-Ni(6)	3.4616(16)
Gd(10)-O(115)	2.432(8)	Gd(22)-O(50)	2.412(8)	Gd(6)-Ni(10)	3.4605(15)
Gd(11)-O(8)	2.284(7)	Gd(22)-O(76)	2.380(7)	Gd(7)-Ni(9)	3.5273(16)
Gd(11)-O(48)	2.445(7)	Gd(22)-O(124)	2.447(8)	Gd(8)-Ni(2)	3.5099(17)
Gd(11)-O(110)	2.477(8)	Gd(22)-O(154)	2.419(7)	Gd(10)-Ni(4)	3.5301(15)
Gd(11)-O(116)	2.377(7)	Gd(22)-O(47)	2.427(8)	Gd(10)-Ni(5)	3.4536(16)
Gd(11)-O(120)	2.569(8)	Gd(22)-O(99)	2.406(8)	Gd(12)-Ni(8)	3.5381(15)
Gd(11)-O(128)	2.376(9)	Gd(22)-O(117)	2.597(11)	Gd(12)-Ni(7)	3.4923(17)
Gd(11)-O(140)	2.504(8)	Ni(1)-O(6)	2.041(7)	$Gd(13)-Ni(5)^{\#1}$	3.5252(19)
Gd(11)-O(53)	2.593(10)	Ni(1)-O(12)	2.015(7)	Gd(14)-Ni(6)	3.5362(15)
Gd(11)-N(3)	2.571(10)	Ni(1)-O(34)	2.064(7)	Gd(14)-Ni(9)	3.4878(18)
Gd(12)-O(24)	2.376(7)	Ni(1)-O(40)	2.004(7)	Gd(16)-Ni(2)	3.5193(17)
Gd(12)-O(26)	2.455(7)	Ni(1)-O(52)	2.089(7)	Gd(20)-Ni(7)	3.5178(16)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, -y+1, -z+1

in 1 .							
Atom	N8	012	O34	O40	O52	O6	Σcation
Ni1	0.34	0.37	0.33	0.38	0.31	0.35	2.08
Atom	N17	O127	O132	O37	O64	O94	Σcation
Ni2	0.29	0.36	0.36	0.33	0.37	0.34	2.05
Atom	N16	0136	O32	O50	O81	O92	Σcation
N13	0.31	0.34	0.35	0.35	0.35	0.37	2.07
Atom	N6	010	0102	054	079	096	Σcation
N14	0.35 N5	0.35	0.30	0.32	0.35	0.40	2.07
Alom	N3 0.20	0100	0112	0.26	029	0.26	2 cation
Atom	0.29 N/	0.50	0.55 0142	0.30	0.34	0.30	2.03 Scation
Ni6	0.32	0 34	0 3 9	0.20	0.32	0.37	2 02
Atom	0.52 N14	0.34	0.37	0.30	0.52	0.37	Σcation
Ni7	0.25	0.30	0.35	0.33	0.35	0.36	1.95
Atom	N1	O104	O144	O148	O60	082	Σcation
Ni8	0.32	0.35	0.31	0.33	0.35	0.41	2.06
Atom	N11	O59	O66	O87	O97	O98	Σcation
Ni9	0.28	0.33	0.33	0.36	0.33	0.38	2.02
Atom	N10	O157	O20	O58	O70	085	Σcation
Ni10	0.32	0.38	0.38	0.33	0.33	0.38	2.11
Atom	N12	O106	O122	O18	O45	O46	Σcation
Ni11	0.32	0.32	0.36	0.40	0.35	0.34	2.08
Atom	N12	O106	O122	O18	O45	O46	Σcation
Ni11	0.32	0.32	0.36	0.40	0.35	0.34	2.08
Atom	O4	0114	01	—	_	—	Σcation
C1	1.44	1.37	1.23	_	—	—	4.04
Atom	016	O150	O14	—	—	_	Σcation
C4	1.42	1.38	1.25		—	—	4.05
Atom	O130	O134	O24	—	—	—	Σcation
C8	1.41	1.33	1.21	_	—	—	3.95
Atom	O44	O56	O36	_	_	—	Σcation
C9	1.35	1.37	1.30	—	—		4.02
Atom	O68	05	08	—	—	—	Σcation
C12	1.32	1.42	1.15	_	—	—	3.89
Atom	O126	O49	O38	_	—	—	Σcation
C32	1.47	1.26	1.23	_	_	_	3.96
Atom	O108	O91	O86	—	_	—	Σcation
C38	1.32	1.29	1.32	_	—	—	3.93
Atom	O87	O7	O43	—	—	—	Σcation
C64	1.43	1.31	1.19	—	—	—	3.93
Atom	0155	O39	O77	_	_	—	Σcation
N2	1.51	1.65	1.78	_	_	_	4.94
Atom	O17	0137	015	—	—		Σcation
N7	1.61	1.61	1.71		_	_	4.93

Table S3. Selected BVS calculations for Ni, C (in CO_3^{2-}), N (in NO_3^{-}), and O atoms

Atom	O155	O39	O77	—	—	—	Σcation
N15	1.83	1.25	1.82	—	—	—	4.90
Atom	Gd13	Gd22	—	—	—	—	Σcation
O117	0.18	0.22	—	—	—	—	0.40
Atom	Gd5	Gd21	Gd2	—	—	—	Σcation
O129	0.10	0.06	0.28	—	—	—	0.44
Atom	Gd17	Gd3	—	—	—	—	Σcation
O143	0.38	0.08	—	—	—		0.46

*The bond valence was calculated by the equation: $S = \exp((R_0 - R)/b)$ where where *S* is the experimental bond valence, *R* the observed bond length, and R_0 and *b* are fitted bond valence parameters. R_0 of Ni–O, Ni–N, C–O, N–O are 1.654, 1.647, 1.390, 1.432 and b = 0.37. Bond valence sum (BVS) calculations were performed for selected atoms of the asymmetric unit (Ni, 1.95–2.11; C, 3.89–4.05; N, 4.90–4.94), which are consistent with the expected valence values (+2; +4; +5) and confirm the reliability of the structure.

	$-\Delta S_{max}$	Т	ΔH	Ref
Compound	$(J \cdot kg^{-1} \cdot K^{-1})$	(K)	(T)	
{Gd ₆₀ }	48.0	2.0	7	7
${Gd_{104}}$	46.9	2	7	8
${\mathbf{Gd}_{24}}$	46.1	2.5	7	9
${\mathbf{Gd}_{48}}$	43.6	1.8	7	10
{Gd ₂₇ }	41.8	2.0	7	11
$\{\mathbf{Gd}_{36}\}$	39.7	2.5	7	12
{Gd ₃₇ }	38.7	2.0	7	13
${Gd_{140}}$	38.0	2.0	7	14
${\mathbf{Gd}_{38}}$	37.9	1.8	7	15
${Gd_{158}Co_{38}}$	46.9	2	7	16
$\{Gd_{44}Ni_{22}\}$	44.9	2	7	This work
${Gd_{30}Co_{12}}$	44.7	2.0	7	17
{Gd ₉₆ Ni ₆₄ }	42.8	3.0	7	18
${Gd_{102}Ni_{36}}$	41.3	2.0	7	19
$\{Gd_{42}Co_{10}\}$	41.3	2.0	7	20

Table S4. Magnetic entropy changes for selected high-nuclearity Gd^{III} -based cluster materials.

40.6	3.0	7	21
40.5	3.0	7	22
40.5	2.0	7	23
38.2	2.0	7	20
26.0	3.8	7	24
21.0	2.1	7	25
	40.6 40.5 40.5 38.2 26.0 21.0	40.63.040.53.040.52.038.22.026.03.821.02.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

3. Supplementary Figures

Figure S1 SEM images of 1.

Figure S2 The coordination mode of Gd^{3+} and Ni^{2+} in **1**. (a) [GdO₉] polyhedron; (b) [GdO₈N] polyhedron; (c) [GdO₈] polyhedron; (d) [NiO₅N] polyhedron.

Figure S3 (a) The space-filling view of **1**; (b) Wireframe view of the packing mode of **1** aggregation.

Figure S4 Calculated and experimental XRD patterns for **1**. The red curve is the calculated one obtained from single-crystal X-ray structure analysis.

Figure S5 FTIR spectra of 1.

Figure S6 The thermogravimetric (TG) analysis of 1.

Note: The TGA curve of **1** was investigated under N_2 atmosphere. The weight loss from room temperature to 104 °C should be attributed to the departure of guest molecules, and the calculated loss is 12.9 % while the observed loss is 13.3 %. With the temperature increasing, the coordinated water molecules, nitrate and acetate ligands are gradually lost and the cluster starts to decompose. The residue with the weight of 60.0 % at 710 °C is considered as metallic oxide (Gd₂O₃, NiO).

Figure S7. Plots of temperature dependence of $\chi_m T$ vs *T* and χ_M^{-1} vs T (inset) of wheel-like {Gd₄₄Ni₂₂} cluster.

Figure S8 Experimental magnetization curve of 1 at 2 K.

References

- 1 G.Sheldrick, Acta. Crystlogr. A. Found. Crystlogr., 2008, 64, 112-122
- 2 O. Dolomanov, A. Blake, N. Champness and M. Schroder, Champness and M. Schroder, OLEX: new software for visualization and analysis of extended crystal structures, *J. Appl. Crystallogr.*, 2003, **36**, 1283–1284.
- 3 A. L. Spek, Single-crystal structure validation with the program PLATON, *J. Appl. Cryst.*, 2003, **36**, 7–11.
- 4 A. L. Spek, Structure validation in chemical crystallography, Acta Cryst., 2009, D65, 148–155.
- 5 A. L. Spek, What makes a crystal structure report valid? *Inorg. Chim. Acta*, 2018, **470**, 232–237.
- 6 A. L. Spek, checkCIF validation ALERTS: what they mean and how to respond, *Acta Cryst.*, 2020, **E76**, 1–11.
- 7 X. M. Luo, Z. B. Hu, Q. F. Lin, W. W. Cheng, J. P. Cao, C. H. Cui, H. Mei, Y. Song and Y. Xu, Exploring the performance improvement of magnetocaloric effect based Gd-exclusive cluster Gd₆₀, *J. Am. Chem. Soc.*, 2018, **140**, 11219–11222.
- 8 J. B. Peng, X. J. Kong, Q. C. Zhang, M. Orendac, J. Prokleska, Y. P. Ren, L. S. Long, Z. Zheng and L. S. Zheng, Beauty, symmetry, and magnetocaloric effect four-shell keplerates with 104 lanthanide atoms, *J. Am. Chem. Soc.*, 2014, **136**, 17938–17941.
- 9 L. X. Chang, G. Xing, L. Wang, P. Cheng and B. Zhao, A 24-Gd nanocapsule with a large magnetocaloric effect, *Chem. Commun.*, 2013, 49, 1055–1057.
- 10 F. S. Guo, Y. C. Chen, L. L. Mao, W. Q. Lin, J. D. Leng, R. Tarasenko, M. Orendá č, J. Prokleš ka, V. Sechovsky and M. L. Tong, Anion-templated assembly and magnetocaloric properties of a nanoscale {Gd₃₈} cage versus a {Gd₄₈} barrel, *Chem. Eur. J.*, 2013, 19,

14876-14885.

- 11 X. Y. Zheng, J. B. Peng, X. J. Kong, L. S. Long and L. S. Zheng, Mixed-anion templated cage-like lanthanide clusters: Gd₂₇ and Dy₂₇, *Inorg. Chem. Front.*, 2016, **3**, 320–325.
- 12 M. Y. Wu, F. L. Jiang, X. J. Kong, D. Q. Yuan, L. S. Long, S. A. AlThabaiti and M. C. Hong, Two polymeric 36-metal pure lanthanide nanosize clusters, *Chem. Sci.*, 2013, 4, 3104–3109.
- Y. Zhou, X.Y. Zheng, J. Cai, Z. F. Hong, Z. H. Yan, X. J. Kong, Y. P. Ren, L. S. Long and L. S. Zheng, Three giant lanthanide clusters Ln₃₇ (Ln = Gd, Tb, and Eu) featuring a double-cage structure, *Inorg. Chem.*, 2017, 56, 2037–2041.
- X. Y. Zheng, Y. H. Jiang, G. L. Zhuang, D. P. Liu, H. G. Liao, X. J. Kong, L. S. Long and L. S. Zheng, A gigantic molecular wheel of {Gd₁₄₀}: a new member of the molecular wheel family, *J. Am. Chem. Soc.*, 2017, 139, 18178–18181.
- 15 F. S. Guo, Y. C. Chen, L. L. Mao, W. Q. Lin, J. D. Leng, R.Tarasenko, M. Orendáč, J. Prokleš ka, V. Sechovsky and M. L. Tong, Anion-templated assembly and magnetocaloric properties of a nanoscale {Gd₃₈} cage versus a {Gd₄₈} barrel, *Chem. Eur. J.*, 2013, 19, 14876–14885.
- 16 N. F. Li, X. M. Min, J. Wang, J. L. Wang, Y. Song, H. Mei and Y. Xu, Largest 3d-4f 196nuclear Gd₁₅₈Co₃₈ clusters with excellent magnetic cooling, *Sci China Chem*, 2022, 65, 1577– 1583.
- 17 H. J. Lun, L. Xu, X. J. Kong, L. S. Long and L. S. Zheng, A high-symmetry double-shell Gd₃₀Co₁₂ cluster exhibiting a large magnetocaloric effect, *Inorg. Chem.*, 2021, **60**, 10079– 10083.
- 18 W. P. Chen, P. Q. Liao, Y. Yu, Z. Zheng, X. M. Chen and Y. Z. Zheng, A mixed-ligand approach for a gigantic and hollow heterometallic cage {Ni₆₄RE₉₆} for gas separation and magnetic cooling applications, *Angew. Chem., Int. Ed.*, 2016, **55**, 9375–9379.
- 19 W. P. Chen, P. Q. Liao, P. B. Jin, L. Zhang, B. K. Ling, S. C. Wang, Y. T. Chan, X. M. Chen and Y. Z. Zheng, The gigantic {Ni₃₆Gd₁₀₂} hexagon: a sulfate-templated "star-of-david" for photocatalytic CO₂ reduction and magnetic cooling, *J. Am. Chem. Soc.*, 2020, **142**, 4663–4670.
- 20 J. B. Peng, Q. C. Zhang, X. J. Kong, Y. Z. Zheng, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng and Z. P. Zheng, High-nuclearity 3d–4f clusters as enhanced magnetic coolers and molecular magnets, J. Am. Chem. Soc., 2012, 134, 3314–3317.
- 21 Q. F. Lin, J. Li, X. M. Luo, C. H. Cui, Y. Song and Y. Xu, Incorporation of silicon–oxygen tetrahedron into novel high-nuclearity nanosized 3*d*–4*f* heterometallic clusters, *Inorg.Chem.*, 2018, **57**, 4799–4802.
- 22 D. P. Liu, X. P. Lin, H. Zhang, X. Y. Zheng, G. L. Zhuang, X. J. Kong, L. S. Long and L. S. Zheng, Magnetic properties of a single-molecule lanthanide-transition-metal compound containing 52 gadolinium and 56 nickel atoms, *Angew. Chem. Int. Ed.*, 2016, 55, 4532–4536.
- 23 S. Fan, S. H. Xu, X. Y. Zheng, Z. H. Yan, X. J. Kong, L. S. Long and L. S. Long, Four 3d–4f heterometallic Ln₄₅M₇ clusters protected by mixed ligands, *CrystEngComm*, 2018, 20, 2120–2125.
- 24 Z. M. Zhang, L. Y. Pan, W. Q. Lin, J. D. Leng, F. S. Guo, Y. C. Chen, J. L. Liu and M. L. Tong, Wheel-shaped nanoscale 3d-4f {Co^{II}₁₆Ln^{III}₂₄} clusters (Ln= Dy and Gd), *Chem. Commun.*, 2013, 49, 8081-8083.
- 25 J. D. Leng, J. L. Liu and M. L. Tong, Unique nanoscale {Cu^{II}₃₆Ln^{III}₂₄}(Ln= Dy and Gd)

metallo-rings, Chem. Commun., 2012, 48, 5286-5288.