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Fig. S1 SEM image of LMFP-0.5 (×60,000).

During the sintering process, LiMn0.8Fe0.2PO4 nanoparticles were formed and 

the grains covered with a uniform pyrolytic carbon bubble-layer. Fig. S1 shows 

SEM image of the morphology of nanoparticle under the magnification of 

×60,000. The size of nanoparticle is about 250 nm with spherical-like shape.
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Fig. S2 SEM image of MP-0.5

The morphology of unsintered sample MP-0.5 is shown in Fig. S2. It can be 

seen that the unsintered particles are irregular in shape with obvious 

agglomeration of hydrated MnHPO4. Therefore, the high-energy ball milling 

method can be used to refine the crystal grain size and improve the 

agglomeration.
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Fig. S3 XRD pattern of MP-0.5 (sintered at 180 and 250 °C for 2 h)
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Fig. S4 FT-IR spectra of MP-0.5

According to FT-IR spectra of MnHPO4·2.25H2O (Fig. S4), the vibrational 

bands of HPO4
2− are located at 2907, 2832, 2385 and 2021 cm−1 are assigned to 

the asymmetric stretching of νOH(HPO4
2−) and symmetric stretching of 

νOH(HPO4
2−), respectively.1,2 The band of 1638 cm−1 is attributed to OH 

bending mode of H2O molecule of crystalline hydrate.1 The bands of 1402 and 

1326 cm−1 are assigned to stretching vibration of C=C.3 The bands at 819 and 

731 cm−1 are the main attributed to the stretching vibration of MnO groups.4 

The bands of 1100 - 900 and 650 - 500 cm−1 are mainly attributed to the 

intramolecular vibrations of PO4
3-. The strong bands around 958 and 1013 cm−1 

are assigned to symmetric stretching ν1(A1) and asymmetric stretching ν3(F2) 

modes of P–O, respectively. Meanwhile, the bands at around 627 and 509 cm−1 

are attributed to the resolved triply ν4(F2) and doubly ν2(E) degenerate bending 

and stretching modes of P–O–P, respectively. The FT-IR spectra of 

MnHPO4·2.25H2O is similar to that of MgHPO4·3H2O measured by Boonchom 

et al.5
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Fig. S5 SEM images of (a) LMFP-0, (b) LMFP-0.1, (c) LMFP-0.3 and (d) 

LMFP-0.8.
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Fig. S6 Primary particle size distribution of LMFP-0.5
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Fig. S7 Nitrogen adsorption-desorption isotherms and pore size distribution 

(inset) of LMFP-0.5 and LMFP-0.
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Fig. S8 Discharge profiles at different rates of LMFP-0.
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Fig. S9 The relationship between Z′ and ω−1/2 at the low-frequency region for 

samples.
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Fig. S10 Ex-situ (a) XRD and (b) Raman patterns of cathode films of LMFP-0.5 

before and after 200 cycles.
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Table S1 Lattice parameters and cell volume of samples

Samples a/Å b/Å c/Å V/Å3

LMFP-0 10.431 6.089 4.738 300.92

LMFP-0.1 10.435 6.095 4.730 300.52

LMFP-0.3 10.433 6.087 4.741 300.75

LMFP-0.5 10.439 6.090 4.736 300.98

LMFP-0.8 10.440 6.091 4.743 300.19

LMFP-1.0 10.441 6.083 4.738 301.47
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Table S2 Mass content, molar and molar ratio of elements in LMFP-0.5

Elements Li Mn Fe P

mass content / % 2.563 15.717 3.791 10.996

Molar / mol 0.369 0.286 0.068 0.355

molar ratio 1.040 0.806 0.191 1.000
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Table S3 Redox peak interval △V1(Mn) and △V2(Fe), charge-transfer 

resistance (Rct), exchange current density (i0) and Li+ diffusion coefficient (DLi+) 

of samples

Samples △V1(Mn) △V2(Fe) Rct/Ω i0/mA cm-2 DLi
+/cm2 s-1

LMFP-0 0.52 0.27 396.9 0.065 2.084×10-15

LMFP-0.5 0.37 0.18 201.3 0.128 1.106×10-14

LMFP-1.0 0.49 0.26 340.7 0.075 9.072×10-15
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Table S4 Comparisons of the precursors, synthetic strategies and performances 

between this work and the previously reported LiMn0.8Fe0.2PO4@C cathode 

materials.

Materials Precursor Method for 
precursor

Primary 
particle 

size (nm)

Capacity 
(mA h g-1) Cyclic performance Ref.

LiMn0.8Fe0.2PO4@C MnHPO4·2.25H2O
FeC2O4

Sol-gel reaction
and ball-milling 50~100

153.9 (0.05 C)
130.1 (1 C)
75.9 (5 C)

95.84%
(100 cycles@0.05 C)

98.62%
(100 cycles@1 C)

This 
work

LiMn0.8Fe0.2PO4-C
MnPO4‧H2O

FeC2O4
Ball-milling 200~300 99.5 (0.1 C)

78.3 (0.5 C)
92%

(50 cycles@0.5 C) 6.

LiMn0.8Fe0.2PO4 Mn0.8Fe0.2PO4
Solid-state 

reaction 80 148 (0.1 C) / 7.

LiMn0.8Fe0.2PO4/C Mn0.8Fe0.2C2O4‧2H2O
Solid-state 

reaction
and ball-milling

100~150
142.7 (0.1 C)
129.8 (1 C)
112.6 (5 C)

95.4%
(300 cycles@1 C) 8.

LiMn0.8Fe0.2PO4/C
Mn3(PO4)2‧3H2O

FeC2O4
Ball-milling 50

159 (0.1 C)
148 (1 C)
138 (5 C)

95%
(500 cycles@1 C)

92%
(500 cycles@5 C)

9.

LiMn0.8Fe0.2PO4/C Mn0.8Fe0.2PO4‧2H2O
Co-precipitation 

method 30~50

151.1 (0.1 C)
129.8 (1 C)
98.4 (5 C)
82 (10 C)

/ 10.

LiMn0.8Fe0.2PO4/C
(Mn0.8Fe0.2)3(PO4)2‧

xH2O
Co-precipitation 

method 100
150.0 (0.05 C)

130.0 (1 C)
110.3 (5 C)

95.1%
(300 cycles@1 C) 11.
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