Electronic Supporting Information

Aln₃Si₄P₉ (A = Ca, Sr): Quaternary Phosphides with Double-Helix Structures Exhibiting High

Laser-Induced Damage Thresholds

Ming-Shu Zhang,^{a,b} Bin-Wen Liu,^a * Xiao-Ming Jiang,^a and Guo-Cong Guo^a *

^{*a*} State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure

of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100190, P. R. China

* Guo-Cong Guo: gcguo@fjirsm.ac.cn; Bin-Wen Liu: bwliu@fjirsm.ac.cn.

Table of Contents

1. Figures and Tables3
Fig. S1 EDS of single crystal of 1 (a) and 2 (b)3
Fig. S2 IR spectra of 1 and 23
Fig. S3 Frequency-dependent refractive indexes of 1 (a) and 2 (b) along
symmetry-independent <i>a</i> and <i>c</i> axes4
Fig. S4 Calculated birefringence of 1 (a) and 2 (b)4
Table S1 Crystal data and structure refinement results for 1 and 2 5
Table S2 Fractional atomic coordinates (× 10 ⁴) and equivalent isotropic
displacement parameters (Å ² × 10 ³) for 1 and 2 5
Table S3 Selected distances (Å) for 1 and 26
Table S4 Selected angles for 1 and 2.

1. Figures and Tables.

Fig. S1 EDS of single crystal of 1 (a) and 2 (b).

Fig. S2 IR spectra of 1 and 2.

Fig. S3 Frequency-dependent refractive indexes of **1** (a) and **2** (b) along symmetry-independent *a* and *c* axes.

Fig. S4 Calculated birefringence of 1 (a) and 2 (b).

Empirical formula	$Caln_3Si_4P_9$ (1)	SrIn ₃ Si ₄ P ₉ (2)
CCDC	2124618	2124617
Fw	775.63	823.17
Temperature (K)	293(2)	293(2)
Space group	P41212	P41212
a (Å)	12.2959(3)	12.4702(3)
b (Å)	12.2959(3)	12.4702(3)
<i>c</i> (Å)	9.7043(4)	9.6358(4)
Volume (ų)	1467.18(12)	1498.42(10)
Z	1	1
D _{calcd} (g cm ⁻³)	3.511	3.649
μ (mm ⁻¹)	6.301	9.348
GOF on F ²	1.002	1.049
$R_1^{a} (l > 2\sigma (l))$	0.0477	0.0326
$wR_2^b(l > 2\sigma(l))$	0.1723	0.0826
R ₁ ^a (all data)	0.0542	0.0347
wR_2^b (all data)	0.1921	0.0840
Flack	0.06(3)	0.00(3)
$\Delta ho_{max} / \Delta ho_{min}$ (e Å ⁻³)	3.77/-3.65	1.29/-2.13

Table S1 Crystal data and structure refinement results for 1 and 2.

 ${}^{a}R = \Sigma / |F_{o}| - |F_{c}| / \Sigma / F_{o}|, \ {}^{b}wR = (\Sigma (w(F_{o}{}^{2} - F_{c}{}^{2})^{2}) / \Sigma (w(F_{o}{}^{2})^{2}))^{1/2}.$

Table	S2	Fractional	atomic	coordinates	(×	10 ⁴)	and	equivalent	isotropic	displacement
parame	eter	rs (Ų × 10³)) for 1 an	nd 2 .						

		1		
Atom	х	У	Z	U(eq)
Cal	5766(3)	5766(3)	0	27.4(12)
ln1	3334.2(8)	327.3(9)	4734.5(11)	15.2(4)
In2	3606.3(10)	3606.3(10)	0	24.4(5)

Si1	2152(3)	1234(3)	1472(4)	9.2(8)
Si2	1006(3)	3788(3)	1590(3)	3.1(7)
P1	2584(3)	2986(3)	2075(4)	12.8(8)
P2	4639(3)	1909(3)	4672(4)	10.5(7)
Р3	3812(3)	635(3)	720(3)	6.4(7)
P4	845(3)	845(3)	0	9.8(10)
P5	1583(3)	471(4)	3400(4)	20.4(9)
		2		
Atom	х	У	Z	U(eq)
Sr1	5824.5(10)	5824.5(10)	0	22.3(4)
In1	3614.8(7)	3614.8(7)	0	18.1(3)
In2	3353.6(6)	309.6(7)	4702.4(8)	11.9(2)
Si1	2164(2)	1271(2)	1504(3)	8.1(6)
Si2	1041(2)	3818(2)	1626(3)	1.6(5)
P1	4671(2)	1829(2)	4672(3)	10.8(5)
P2	3788(2)	660(2)	718(3)	7.2(5)
Р3	2583(2)	2996(2)	2114(3)	12.5(6)
P4	1617(2)	489(3)	3420(3)	15.0(6)
Р5	900(2)	900(2)	0	10.3(8)

Table S3 Selected distances (Å) for 1 and 2.

Bond	Distances	Bond	Distances
In1-P2	2.530(4)	Si1-P5	2.206(5)
In1-P2	2.522(4)	Si1-P3	2.290(5)
In1-P3	2.691(4)	Si1-P4	2.202(5)
In1-P5	2.519(4)	Si2-P2	2.290(5)
In2-P1×2	2.493(4)	Si2-P3	2.290(4)
In2-P5×2	2.465(5)	Si2-P1	2.227(5)
Si1-P1	2.295(5)	Si2-P3	2.288(5)
	2	2	
Bond	Distances	Bond	Distances
In1-P3×2	2.530(3)	Si1-P3	2.291(4)
In1-P4×2	2.516(3)	Si1-P4	2.191(4)
In2-P1	2.507(3)	Si2-P1	2.217(4)
In2-P1	2.520(3)	Si2-P2	2.309(4)
In2-P2	2.675(3)	Si2-P3	2.311(4)
In2-P4	2.504(3)	Si2-P3	2.230(4)
Si1-P2	2.292(4)		

Table S4 Selected angles for 1 and 2.

		1	
Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
P5-Si1-P4	103.8(16)	P4-In1-P4	109.71(14)

P5-Si1-P3	122.16(16)	P4-In1-P3	120.57(9)
P4-Si1-P3	105.77(15)	P4-In1-P3	98.84(9)
P5-Si1-P2	110.33 (13)	P4-In1-P3	98.84(9)
P4-Si1-P2	113.86(16)	P4-In1-P3	120.57(9)
P3-Si1-P2	101.27(15)	P3-In1-P3	109.77(14)
P1-Si2-P3	112.78(15)	P4-In2-P1	119.56(10)
P1-Si2-P2	110.29(14)	P4-In2-P1	114.61(9)
P3-Si2-P2	112.13(15)	P1-In2-P1	108.00(11)
P1-Si2-P2	113.50(15)	P4-In2-P2	101.39(10)
P3-Si2-P2	111.33(15)	P1-In2-P2	103.19(9)
P2-Si2-P2	95.66(14)	P1-In2-P2	108.78(9)

Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
P4-Si1-P5	103.1(2)	P5-In1-P2	118.51(14)
P4-Si1-P3	111.93(17)	P5-In1-P2	113.79(12)
P5-Si1-P3	114.6(2)	P2-In1-P2	110.83(14)
P4-Si1-P1	122.56(19)	P5-In1-P3	99.81(13)
P5-Si1-P1	104.9(2)	P2-In1-P3	102.78(12)
P3-Si1-P1	100.16(19)	P2-In1-P3	109.56(11)
P1-Si2-P2	111.83(19)	P5-In2-P5	107.54(19)
P1-Si2-P3	112.75(18)	P5-In2-P1	98.84(12)
P2-Si2-P3	112.41(18)	P5-In2-P1	121.55(12)

P1-Si2-P3	109.69(19)	P5-In2-P1	121.55(12)
P2-Si2-P3	114.20(18)	P5-In2-P1	98.84(12)
P3-Si2-P3	94.92(17)	P1-In2-P1	110.12(18)