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Fig. S1. (a, b) SEM images and (c) TEM images of Fe-NTAC nanowires.
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Fig. S2. (a) SEM image and (b) TEM image of Fe-NTAC@GC nanowires.
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Fig. S3. (a) and (b) TEM images of Fe-NTAC@GC nanowires prepared by suing 1.5 g of glucose.
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Fig. S4. (a) XRD pattern of Fe3C@C and Fe3C-C@CTs nanowires, and (b) crystal structure of Fe3C.
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Fig. S5. (a) SEM image and (b) TEM image of Fe3C-C@CTs nanowires.
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Fig. S6. (a, b) SEM images, (c, d) TEM image of FeS2-C nanowires.



S8

Fig. S7. EDX spectrum of uniformly FeS2-C@CTs nanowires nanowires.
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Fig. S8. Raman spectrum of the FeS2-C@CTs and FeS2-C nanowires.
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Fig. S9. TGA curves of FeS2-C@CTs and FeS2-C nanowires with a temperature ramp of 10 °C min−1 

in an air atmosphere.

As shown in Fig. S8, the weight loss below 200 oC was mainly derived from the vaporization of 

adsorbed water, while the dramatic decline can be attributed to the decomposition of carbon and the 

conversion of FeS2 into Fe2O3 after 200 oC. It was found that the mass of FeS2-C@CTs and FeS2-C 

nanowires decreased by 56.9% and 33.4% after annealing process, respectively. Taking FeS2-C@CTs 

as an example, the content of carbon can be calculated according to the following equations:[1]

CNTs/FeS2@C → Fe2O3 + gas      atomic weight: Fe (56), S (32), O (16)

𝑥+
[(56 + 32 ∗ 2) ‒ (56 * 2 + 16 * 3)/2](1 ‒ 𝑥)

56 + 32 ∗ 2
= 56.9%

The total weight percentage of FeS2-C@CTs is considered as 100%, while the carbon weight 

percentage is x. According to the above equation, the carbon content of FeS2-C@CTs is calculated to 

be 35%. In the same way, the carbon content of FeS2-C is calculated to be 4%.
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Fig. S10. XPS spectra of FeS2-C@CTs nanowires.
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Fig. S11. (a) XRD pattern and (b) charge–discharge curves of C@CTs nanowires.
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Fig. S12. (a) CV curves at 0.1 mV s−1 and (b) charge–discharge curves from 50 mA g−1 of FeS2-C 

nanowires.
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Fig. S13. (a) SEM image of the FeS2-C@CTs electrode after 300 cycles. (b) SEM image of the FeS2-C 

electrode after 300 cycles.
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Fig. S14. Side and top views of the geometry structure with one K-ion absorbed on (a, b) FeS2 surface, 

(c, d) FeS2-C@CTs, (e, f) KFeS2 surface and (g, h) KFeS2-C@CTs.
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Fig. S15. (a) SEM image of CoCO3 microspheres, (b) SEM image of Co3O4 microspheres, and (c,d) 

SEM images of P2-type K0.6CoO2 microspheres.
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Fig. S16. (a) Rietveld refinement of X-ray diffraction data and (b) schematic structure of the P2-type 

K0.6CoO2 microspheres.
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Fig. S17. Typical charge–discharge curves of K0.6CoO2.
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Table S1. Comparison of properties of the FeS2-C@CTs nanowires with the previously reported 
FeS2-based anodes.

Materials
Reversible 

capacity (mAh g−1)
Cycling stability

Particle size 
(nm)

References

FeS2-C@CTs 524 (50 mA g−1) 82.3% (1000 cycles) 10 This work

MCS-FeS2@C-20 519 (50 mA g−1) 84% (500 cycles) 150 [2]

H-FeS2@3DCS 516 (50 mA g−1) ≈100% (1000 cycles) ≤ 30 [3]

FeS2@C nanoparticles 521 (500 mA g−1) 86% (100 cycles) 10 [4]

G@porousFeS2@C 

composite
431 (300 mA g−1) 90% (30 cycles) 35 [5]

FeS2@RGO-2 151 (500 mA g−1) 81% (420 cycles) 300 [6]

m-FeS2@C-SSNFG 523 (50 mA g−1) 72% (1000 cycles) 20 [7]

Rod-like FeS2/C@C 340 (100 mA g−1) 77% (100 cycles) 50 [8]

FeS2@C nano-candied 

haws 
495 (100 mA g−1) 73% (300 cycles) 500 [9]

FeS@NC nanosheets 415 (100 mA g−1) 69% (1100 cycles) 10~200 [10]

Fe7Se8@C nanotubes 344 (100 mA g−1) 89% (500 cycles) ~5 [11]

ZnS@C 336 (100 mA g−1) 115% (2300 cycles) ~20 [12]

Table S2. Comparison of electrochemical properties of the K0.6CoO2//FeS2-C@CTs full battery and 
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other reported FeS2-based potassium-ion full batteries.

Full cells
Reversible 

capacity (mAh g−1)
Cycling stability

Rate capability 

(mAh g−1)
References

K0.6CoO2//FeS2-C@CTs 230 (50 mA g−1) 88% (200 cycles) 125 (1 A g−1) This work

PTCDA//Fe1−xS@C-3 330 (50 mA g−1) 37% (150 cycles) 165 (1 A g−1) [13]

KCo2O4//FeS2@C 146 (100 mA g−1) 78% (100 cycles) 53 (0.5 A g−1) [9]

K0.4CoO2// MCS-FeS2@

C-20
239 (50 mA g−1) 86% (200 cycles) 69 (0.8 A g−1) [2]
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