Solubilized LiNO₃ with CsF of Cationic Size Effect to Protect

Lithium Metal Anode and Prevent the Dendrite in Carbonate

Electrolyte

Jing Zhao¹, Zhengwei Wan¹, Xiaomin Zeng¹, Miaomiao Tian¹, Kun Wang¹, Xinyu Chen¹, Min Ling^{1,2*}, Wenbin Ni^{1,2*}, Chengdu Liang^{1,2*}

¹ College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China, 310027

² Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, China 324000

Experimental section:

1.1 Preparation of electrolyte:

The basic electrolyte (BE) was 1 M lithium hexafluorophosphate (LiPF₆) in ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1, v/v). 0.5 wt% lithium nitrate (LiNO₃) and 0.5 wt% cesium fluoride (CsF) as additives mixed in basic esterbased electrolyte promoting dissolution mutually in an Ar-filled glove box (O₂<0.1 ppm, H₂O<0.1 ppm).

1.2 Preparation of cathodes:

Polyacrylonitrile (PAN) and sulfur were mixed then thermally polymerized at the temperature 330 °C in atmosphere of Ar, and the black powder of sulfurized polyacrylonitrile (SPAN) was obtained (sulfur by weight: 45 wt%).

The SPAN was mixed with super P and poly(vinylidenefluoride) (PVDF) solution (5 wt% PVDF in NMP) at a mass ratio of 8:1:1, some amount of N-methylpyrrolidone (NMP) was added to disperse the mixture for the homogeneous slurry. The slurry was coated onto carbon coated aluminum foil, vacuum-dried at 60°C for 24 h and cut into electrode with a diameter of 12 mm. The areal mass loadings of the electrodes are 4.8 - 5.0 mg/cm². The high loading LiFePO₄ (LFP) and

 $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ (NCM523) cathodes were bought from Guangdong Canrd New Energy Technology Co.,Ltd., and the weight ratio of $LiFePO_4$ and $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ were 10.2 mg/cm² and 8 - 9 mg/cm² respectively.

1.3 Cell Assembling:

The cells were assembled for Lithium metal foil (450 μ m, 15.6 mm) and polypropylene microporous film (Celgard 2400, 19 mm) were used as anodes and separator in 2025 type button cells respectively. Li || Li, Li || Cu and full batteries were injected 60 μ L electrolyte and assembled for electrochemical tests in an argonfilled glove box. Li-Li symmetrical battery cycled with current density 1 mA/cm2 for 1mAh/cm2. Li || SPAN battery cycled at a 0.1 C and 1 C (1C = 600 mA/mg) with a cutoff voltage of 1 - 3 V; Li || LFP battery cycled at a 0.1 C and 1 C (1C = 150 mA/mg) with a cutoff voltage of 2.5 - 4.0 V; Li || NCM523 battery cycled at a 0.1 C and 1 C (1C = 165 mA/mg) with a cutoff voltage of 3.0 - 4.4 V.

1.4 Characterizations and tests:

The galvanostatic charge/discharge experiments and rate performance tests were carried out on a LAND CT2001A battery-testing system. EIS measurements with the frequency ranging from 0.1 Hz to 100 kHz, Chronoamperometry (CA) of lithium anode with an overpotential of -130 mV vs. Li⁺/Li. Tafel polarization curves with a voltage range of -0.3 V to 0.3 V vs. Li⁺/Li and linear sweep voltammetry (LSV) of Li || Cu battery with a voltage range of 0 V to 2.0 V, were conducted on CHI 660E electrochemical workstation. Cyclic voltammetry (CV) test was conducted on Solartron 1470E MutiStat instrument. The lithium deposition process was observed by In-situ optical microscopy observation (LIB MS) equipped with glassy carbon electrodes and Au electrodes (Beijing Scistar technology Co.,Ltd). The morphologies were observed by a field-emission scanning electron microscope (FESEM, SU8010, HITACHI) equipped with X-ray spectroscopy (EDX) for elemental analysis. X-ray photoelectron spectroscopy (XPS) data was collected through ESCALAB.

1.5 Computational methods

The Molecular Dynamics (MD) simulations of the electrolytes were carried out by the Gromacs (version 2020.6) program suite¹ with General Amber force field(GAFF). The force field parameters of organic molecules were obtained by Sobtop program². The Restrained Electro Static Potential (RESP) charges^{3, 4} were based on DFT calculation by the ORCA program⁵ and wavefunction analysis by Multiwfn⁶. The solution systems were built through randomly placing 826 DEC, 1498 EC molecules and 200 LiPF₆, and then added 190 LiNO₃ and 86 CsF molecules into the corresponding systems, respectively. The initial simulation boxes of dimensions $100\times100\times100$ Å³ packed with electrolyte components were constructed using the packmol program⁷. These structures were first relaxed by energy minimizing calculations and then undergo annealing from 0 to 298.15 K with the time step of 1 ps during 1ns to reach the equilibrium state. Velocity-rescale thermostat with a relaxation constant of 1 ps was used to control the temperature at 298.15 K. Parrinello-Rahman barostat with isothermal compressibility constant of 4.5×10^{-5} was used to control the pressure at 1.01325×10^{5} Pa. Periodic boundary conditions were applied in all directions. Particle-mesh Ewald (PME) method with a cut-off distance of 12 Å was applied to treat the electrostatic interactions and the van der Waals forces.

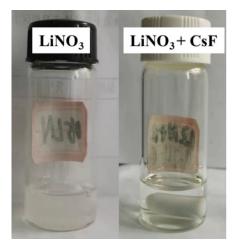


Fig. S1 Photo of LiNO₃ and LiNO₃ + CsF in carbonate electrolyte.

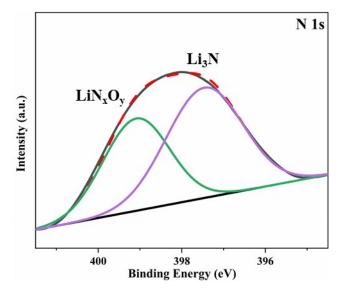


Fig. S2 XPS spectrum of the N 1s in the electrolyte with LiNO₃ and CsF additives after 5 cycles.

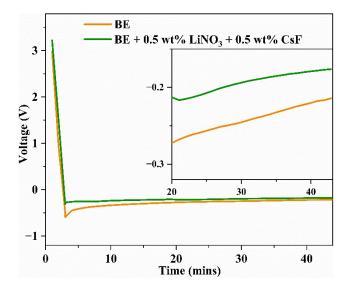


Fig. S3 Discharge voltage profiles of in-situ optical visualization Li || Cu cells during Li⁺ deposition on the Cu substrate with 12 mA/cm² in different electrolytes.

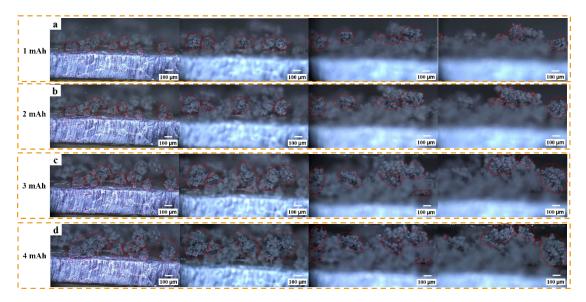


Fig. S4 In-situ optical visualization microscopy for the lithium metal symmetrical cell during deposition of Li⁺ with 12 mA/cm² in (a-d) electrolyte without additive;

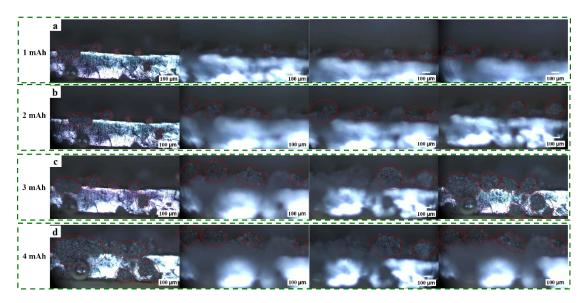


Fig. S5 In-situ optical visualization microscopy for the lithium metal symmetrical cell during deposition of Li⁺ with 12 mA/cm² in the (a-d) electrolyte with LiNO₃ and CsF additives.

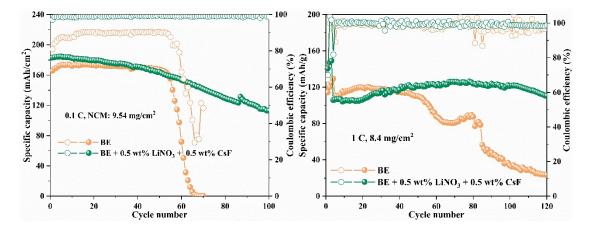


Fig. S6 (a) Cycling performances of the Li || LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ cells with 3.0 – 4.4 V cutoff voltage (a) at the rate of 0.1 C; (b) at the rate of 1 C.

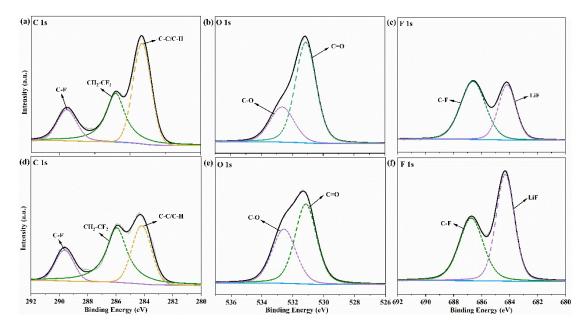


Fig. S7 C 1s, O 1s, and F 1s XPS spectra of the cycled SPAN cathode in (a-c) electrolyte without additive and (d-f) with LiNO₃ and CsF additives after 5 cycles at 0.1 C.

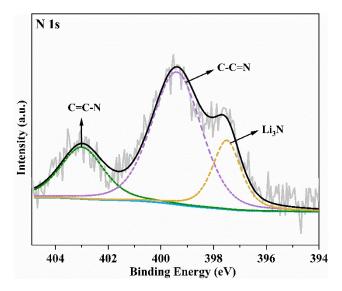


Fig. S8 N 1s XPS spectrum of the cycled SPAN cathode in the electrolyte with LiNO₃ and CsF additives after 5 cycles at 0.1 C.

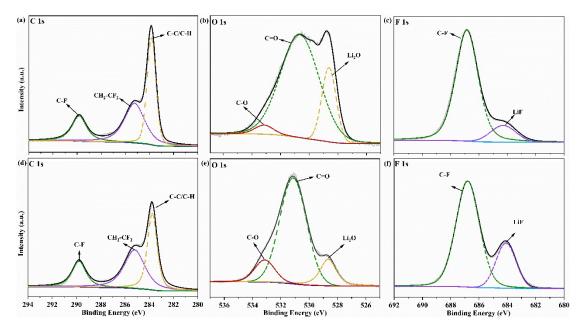


Fig. S9 C 1s, O 1s, and F 1s XPS spectra of the cycled NCM523 cathode in (a-c) electrolyte without additive and (d-f) with LiNO₃ and CsF additives after 5 cycles at 0.1 C.

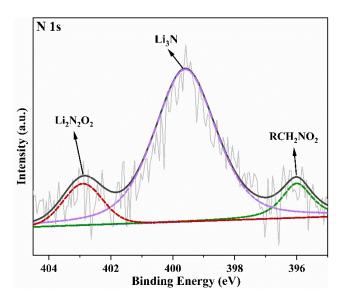


Fig. S10 N 1s XPS spectrum of the cycled NCM523 cathode in the electrolyte with LiNO₃ and CsF additives after 5 cycles at 0.1 C.

Table S1

Electrolyte	Solubilizer	LiNO ₃	Li Cu Coulombic Efficiency	Cycles	mA/cm ² , mAh/cm ²	Reference
1 M LiPF ₆ in	0.5 wt.% CsF	0.5 wt.%	98 %	200	1, 1	This work
EC/DEC (v/v, 1:1)						
1 M LiPF ₆ in	0.5 wt.% Sn(OTf) ₂	1 wt.%	96.7 %	80	1, 1	8
EC/DEC (v/v, 1:1)		5 wt.%	98.4 %	300	1, 1	
1 M LiPF ₆ in	$0.2 \text{ wt.}\% \text{ CuF}_2$	1 wt.%	98.1 %	18	0.5, 0.5	9
EC/DEC (v/v, 1:1)						
1 M LiPF ₆ in	180 μL tetramethylurea	20.7 mg	98.19%	10	1, 1	10
EC/EMC (v/v, 1:1) +	in 1 mL electrolyte					
2wt.% FEC						
1 M LiTFSI in	3.5 wt.% N-N-	0.5 wt.%	98%	300	0.5, 0.5	11
FEC/DMC (v/v, 1:4)	Dimethylacetamide					

The comparison of dissolution results of LiNO3 in the carbonate electrolyte with other literatures

Reference

- 1. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess and E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. *SoftwareX*, 2015, **1-2**, 19-25.
- 2. S. Tian Lu, Version 1.0(dev3.1),, <u>http://sobereva.com/soft/Sobtop</u> (accessed on 9-Aug-2022)).
- C. I. Bayly, P. Cieplak, W. Cornell and P. A. Kollman, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model.*The Journal of Physical Chemistry*, 1993, 97, 10269-10280.
- A. R. Narayan, G. Jimenez-Oses, P. Liu, S. Negretti, W. Zhao, M. M. Gilbert, R. O. Ramabhadran, Y. F. Yang, L. R. Furan, Z. Li, L. M. Podust, J. Montgomery, K. N. Houk and D. H. Sherman, Enzymatic hydroxylation of an unactivated methylene C-H bond guided by molecular dynamics simulations. *Nature Chemistry*, 2015, 7, 653-660.
- 5. F. Neese, The ORCA program system. *WIREs Computational Molecular Science*, 2011, **2**, 73-78.
- 6. T. Lu and F. Chen, Multiwfn: a multifunctional wavefunction analyzer. *Journal of Computational Chemistry*, 2012, **33**, 580-592.
- L. Martinez, R. Andrade, E. G. Birgin and J. M. Martinez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. *Journal of Computational Chemistry*, 2009, 30, 2157-2164.
- W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen, Y. He, Q. Feng, G. Zhu and Y. Lu, Colossal Granular Lithium Deposits Enabled by the Grain-Coarsening Effect for High-Efficiency Lithium Metal Full Batteries. *Advanced Materials*, 2020, 32, 2001740.
- C. Yan, Y. X. Yao, X. Chen, X. B. Cheng, X. Q. Zhang, J. Q. Huang and Q. Zhang, Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries. *Angewandte Chemie*, 2018, 57, 14055-14059.
- Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao, C. Li, J. Tan, K. Yu, G. Zhou and H. M. Cheng, Constructing a Stable Interface Layer by Tailoring Solvation Chemistry in Carbonate Electrolytes for High-Performance Lithium-Metal Batteries. *Advanced Materials*, 2022, 34, 2108400.
- Z. Zhu, Z. Liu, R. Zhao, X. Qi, J. Ji, F. Yang, L. Qie and Y. Huang, Heterogeneous Nitride Interface Enabled by Stepwise-Reduction Electrolyte Design for Dense Li Deposition in Carbonate Electrolytes. *Advanced Functional Materials*, 2022, 32.