Supporting information

Two novel Pd thiosemicarbazone complexes as efficient and selective antitumoral drugs

Tania Hidalgo,^a David Fabra,^b Raul Allende,^b† Ana I Matesanz,^b Patricia Horcajada,^{*a} Tarita Biver,^{*c} Adoracion G.Quiroga.^{*b}

Table of contents

Figure S1. 2D [¹ H, ¹³ C] HMBC NMR spectra for complex [Pd(L) ₂]2
Figure S2. Aliphatic area of the 2D [¹ H, ¹³ C] HMBC NMR spectra of complex [PdLCl(DMSO)]2
Figure S3. Aromatic area of the spectra (A) HMQC and (B) HMBC for complex [PdLCl(DMSO)]3
Table S1. Selected bond distances (Å) and angles (°) for complex [PdLCI(DMSO)].
Figure S4. (A) UV-Vis spectra of the complexes $[Pd(L)_2]$ (2.50×10 ⁻³ M, 3% DMSO) and $[PdLCl(DMSO)]$ (2.50×10 ⁻³ M, 5% DMSO) in Tris HCl solution, recorded at different times. (B) UV-Vis spectra of the complexes $[Pd(L)_2]$ (2.50×10 ⁻³ M, 3% DMSO) and $[PdLCl(DMSO)]$ (2.50×10 ⁻³ M, 5% DMSO) in Tris-HCl solution with 4 µM of NaCl, recorded at different times
Figure S5 . Spectroscopic characterization of $[Pd(L)_2]$ and $[PdLCl(DMSO)]$ complexes in Tris-HCl 5 mM, NaCl 100 mM, pH 7.4 at 25 °C
Figure S6 . (A), (C) Stability of $[Pd(L)_2]$ as a function of the temperature (from 25 to 95 °C) and (B), (D) Stability of $[PdLCl(DMSO)]$ with temperature
Table S2. IC_{50} and selective index values of $[Pd(L)_2]$, $[PdLCI(DMSO)]$ and cisplatin after 72h ofincubation with HL-60, Caco-2 and PC-3 cells
Table S3. Effect of $[Pd(L)_2]$ and $[PdLCI(DMSO)]$ complexes in the cell cycle distribution of Caco-2 andPC-3 cell line after 72h of treatment
Figure S7. Subcellular distribution of $[Pd(L)_2]$, $[PdLCl(DMSO)]$ and their respective precursors in A) Caco-2 and B) PC-3 cells after 72 h of incubation with 5 μ M of each complex
Figure S8. Spectrophotometric titrations of the complexes with biosubstrates7
Table S4 . DNA/BSA binding constants (K_b) values for different Pd(II)-thiosemicarbazone complexes.DNA is always natural DNA from calf thymus
Figure S9 . Binding isotherms of fluorescence exchange reaction of (A) EtBr-saturated DNA with $[Pd(L)_2]$ and $[PdLCI(DMSO)]$ and (B) Et-Br-saturated RNA (poly(rA)·poly(rU)) with $[Pd(L)_2]$ and $[PdLCI(DMSO)]$
Table S5. Crystal data and structure refinement results for compound [PdLCI(DMSO)].

Figure S1. 2D [¹H, ¹³C] HMBC NMR spectra for complex [Pd(L)₂].

Figure S2. Aliphatic area of the 2D [¹H, ¹³C] HMBC NMR spectra of complex [PdLCl(DMSO)]. The new DMSO methyl group signal is indicated with an asterisk (*).

Figure S3. Aromatic area of the spectra (A) HMQC and (B) HMBC for complex [PdLCI(DMSO)].

Bond	lengths (Å)	Ang	les (°)
C ₁ –N ₂	1.288(9)	N ₁ -Pd ₁ -S ₁	83.37(19)
C ₁ –N ₃	1.388(10)	N ₁ -Pd ₁ -S ₂	171.77(19)
C ₁ –S ₁	1.752(7)	N ₁ -Pd ₁ -Cl ₁	96.67(19)
C ₈ –N ₁	1.297(9)	S ₁ -Pd ₁ -Cl ₁	177.03(9)
$N_1 - N_2$	1.388(9)	S_2 -Pd ₁ -Cl ₁	89.71(8)
Pd_1-Cl_1	2.350(2)	*S ₁ -Pd ₁ -S ₂	90.53(8)
Pd ₁ –N ₁	2.075(6)	N_6 -Pd ₂ -S ₃	84.15(19)
Pd ₁ -S ₁	2.234(2)	N ₆ -Pd ₂ -S ₄	173.28(18)
Pd ₁ –S ₂	2.249(2)	N ₆ -Pd ₂ -Cl ₂	96.29(19)
		S ₃ -Pd ₂ -Cl ₂	179.12(10)
		S ₄ -Pd ₂ -Cl ₂	89.61(8)
		S ₃ -Pd ₂ -S ₄	89.99(7)

Table S1. Selected bond distances (Å) and angles (°) for complex [PdLCI(DMSO)].

*As it can be found in the CIF file, the structure shows the presence of two symmetry-independent molecules which do not differ significantly from each other

Figure S4. (A) UV-Vis spectra of the complexes $[Pd(L)_2]$ (2.50×10⁻⁵ M, 3% DMSO) and [PdLCl(DMSO)] (2.50×10⁻⁵ M, 5% DMSO) in Tris HCl solution, recorded at different times. (B) UV-Vis spectra of the complexes $[Pd(L)_2]$ (2.50×10⁻⁵ M, 3% DMSO) and [PdLCl(DMSO)] (2.50×10⁻⁵ M, 5% DMSO) in Tris-HCl solution with 4 µM of NaCl, recorded at different times.

Figure S5. Spectroscopic characterization of $[Pd(L)_2]$ and [PdLCl(DMSO)] complexes in Tris-HCl 5 mM, NaCl 100 mM, pH 7.4 at 25 °C. (A) $[Pd(L)_2]$ from 4.92×10^{-6} to 4.87×10^{-5} M; (B) [PdLCl(DMSO)] from 4.92×10^{-6} to 5.84×10^{-5} M; (C) Lambert-Beer plots at 371 nm of $[Pd(L)_2]$ ($\epsilon = 1.11 \times 10^4$ M⁻¹ cm⁻¹, blue dot) and [PdLCl(DMSO)] ($\epsilon = 1.05 \times 10^4$ M⁻¹ cm⁻¹, orange square); (D) Absorbance ratio plots of $[Pd(L)_2]$ (A_{299}/A_{371} , blue dot) and [PdLCl(DMSO)] (A_{300}/A_{371} , orange square).

Figure S6. (A), (C) Stability of $[Pd(L)_2]$ as a function of the temperature (from 25 to 95 °C) in (A) PBS (phosphate 50 mM, NaCl 150 mM, pH 7.2), and (C) Tris-HCl 5 mM/NaCl 100 mM (pH 7.4) buffers; (B), (D) Stability of [PdLCl(DMSO]] with temperature in (B) PBS and (D) Tris-HCl/NaCl buffers (arrows: temperature increase from 25 to 95 °C). $C_{complex} = 3.57 \times 10^{-5}$ M.

Table S2. IC_{50} and selective index values of $[Pd(L)_2]$, [PdLCl(DMSO)] and cisplatin after 72h of incubation with HL-60, Caco-2 and PC-3 cells.

Consular			Selective Index			
	Complex	HL-60	Caco-2	PC-3	Caco-2	PC-3
	[Pd(L) ₂]	> 10 (*OOR)	2.10 ± 0.03	1.25 ± 0.13	0.16	0.09
	[PdLCl(DMSO)]	> 10 (*OOR)	2.40 ± 0.06	1.22 ± 0.09	0.22	0.11
	Cisplatin	0.62 ± 0.05	0.16 ± 0.00	<0.08 (*OOR)	0.26	0.13

*OOR: Out of Range)

Table S3. Effect of $[Pd(L)_2]$ and [PdLCl(DMSO)] complexes in the cell cycle distribution of Caco-2 and PC-3 cell line after 72h of treatment. Controls are depicted as negative cells (C-: exposed to no treatment) and cisplatin, as reference compound. Cell cycle checkpoint activation was evaluated by flow cytometry (FACs Melody). Data shown as mean \pm S.D of two assays in triplicates.

Cell line	Phase	C-	[Pd(L) ₂]	[PdLCl(DMSO)]	Cisplatin
	G0/G1	11.1 ± 2.0	2.2 ± 0.3	13.1 ± 4.2	0.0 ± 0.0
PC-3	S	56.3 ± 3.0	94.5 ± 4.0	99.3 ± 1.0	100.0 ± 0.0
	G2/M	37.6 ± 5.5	0.5 ± 0.1	0.1 ± 0.0	0.18 ± 0.1
	G0/G1	0.9 ± 0.1	5.4 ± 0.9	6.6 ± 0.5	6.5 ± 1.3
Caco-2	S	99.0 ± 4.7	89.0 ± 2.3	81.2 ± 6.2	77.0 ± 3.5
	G2/M	2.8 ± 0.3	3.1 ± 0.1	0.1 ± 0.0	0.1 ± 0.0

Figure S7. Subcellular distribution of $[Pd(L)_2]$, [PdLCl(DMSO)] and their respective precursors in A) Caco-2 and B) PC-3 cells after 72 h of incubation with 5 μ M of each complex. Data are expressed as the metal content (μ g·L⁻¹) in the nucleus (N) or cytoplasm (C).

Figure S8. Spectrophotometric titrations of (A) $[Pd(L)_2]/DNA$ ($C_{complex} = 1.06 \times 10^{-5}$ M, C_{DNA} from 0 (solid) to 1.67×10^{-5} M (dashed)); (B) [PdLCl(DMSO)]/DNA ($C_{complex} = 1.06 \times 10^{-5}$ M, C_{DNA} from 0 (solid) to 1.69×10^{-5} M (dashed)); (C) $[Pd(L)_2]/poly(rA) \cdot poly(rU)$ ($C_{complex} = 1.06 \times 10^{-5}$ M, $C_{poly(rA) \cdot poly(rU)}$ from 0 (solid) to 8.10×10^{-6} M (dashed)); (D) $[PdLCl(DMSO)]/poly(rA) \cdot poly(rU)$ ($C_{complex} = 1.06 \times 10^{-5}$ M, $C_{poly(rA) \cdot poly(rU)}$ from 0 (solid) to 8.10×10^{-6} M (dashed)); (E) $[Pd(L)_2]/poly(rA) \cdot poly(rU)$ ($C_{complex} = 1.06 \times 10^{-5}$ M, $C_{poly(rA) \cdot poly(rU)}$ from 0 (solid) to 8.10×10^{-6} M (dashed)); (E) $[Pd(L)_2]/poly(rA)$ ($C_{complex} = 1.06 \times 10^{-5}$ M, $C_{poly(rA)}$ from 0 (solid) to 3.32×10^{-5} M (dashed)); (F) [PdLCl(DMSO)]/poly(rA) ($C_{complex} = 1.06 \times 10^{-5}$ M, $C_{poly(rA)}$ from 0 (solid) to 2.70×10^{-5} M (dashed)); (G) $[Pd(L)_2]/poly(rU) \cdot poly(rA)^* poly(rU)$ ($C_{complex} = 1.06 \times 10^{-5}$ M, $C_{poly(rA)^* poly(rU)}$ from 0 (solid) to 5.41×10^{-6} M (dashed)); Tris-HCl 5 mM, NaCl 100 mM, pH 7.4, 25 °C.

DNA BUFFER	рН	т (°С)	DNA conc*	DNA Log K _b	BSA Log K _b	REF/DOI
Tris-HCl (5 mM) NaCl (100 Mm)	7.4	25	bp	6.0 - 6.1	6.5 – 7.2	This work
Tris-HCl (5 mM), NaCl (50 mM)	7.4	37	bp	4.6 - 6.2		10.1016/j.jinorgbio.2019.110875
Tris-HCl (5 mM) NaCl (50 mM)	7.2	RT	Ρ	4.4 – 5.2		10.1016/j.ica.2021.120440
Tris-HCl (5 mM) NaCl (50 Mm)	7.2	RT	Р	5.0 – 5.7	4.5 – 6.8	10.1021/acs.inorgchem.0c02373
Tris-HCl (5 mM) NaCl (50 Mm)	7.2	RT	Ρ	4.5 – 5.7	4.1 - 4.5	10.1016/j.molstruc.2020.127703
Tris-HCl (5 mM) NaCl (50 Mm)	7.2	RT	Ρ	4.8 – 6.3		10.1002/aoc.3813
Tris-HCl (5 mM) NaCl (50 mM)	7.2	RT	Ρ	4.8		10.1016/j.jinorgbio.2014.04.017
Tris-HCl (5 mM) NaCl (50 Mm)	7.2	rRT	Ρ	3.8 - 4.4	5.8 – 6.0	10.1021/ic302258k

Table S4. DNA/BSA binding constants (K_b) values for different Pd(II)-thiosemicarbazone complexes. DNA is always natural DNA from calf thymus. The LogK ranges are related to the fact that the reference considers a series of derivatives of the same Pd(II) complex.

*DNA conc = way DNA concentration is expressed for K_b calculations, bp meaning in base pairs units while P is phosphates units. The difference between bp and P is supposed to produce no more than 0.3 increase in Log K_b estimation in P.

Figure S9. Binding isotherms of fluorescence exchange reaction of (A) EtBr-saturated DNA with $[Pd(L)_2]$ ($C_{EtBr} = 9.16 \times 10^{-5}$ M, $C_{DNA} = 2.40 \times 10^{-4}$ M, $C_{complex}$ from 0 to 3.94×10^{-4} M) and [PdLCl(DMSO)] ($C_{EtBr} = 9.16 \times 10^{-5}$ M, $C_{DNA} = 2.40 \times 10^{-4}$ M, $C_{complex}$ from 0 to 5.68×10^{-4} M), Tris-HCl 5 mM, NaCl 100 mM, pH 7.4, 25 °C, $\lambda_{exc} = 510$ nm, $\lambda_{em} = 595$ nm; (B) Et-Br-saturated RNA (poly(rA)·poly(rU)) with $[Pd(L)_2]$ ($C_{EtBr} = 7.83 \times 10^{-5}$ M, $C_{RNA} = 2.42 \times 10^{-5}$ M, $C_{complex}$ from 0 to 3.33×10^{-4} M) and [PdLCl(DMSO)] ($C_{EtBr} = 7.83 \times 10^{-5}$ M, $C_{RNA} = 2.42 \times 10^{-5}$ M, $C_{complex}$ from 0 to 3.32×10^{-4} M) and [PdLCl(DMSO)] ($C_{EtBr} = 7.83 \times 10^{-5}$ M, $C_{RNA} = 2.42 \times 10^{-5}$ M, $C_{complex}$ from 0 to 3.32×10^{-4} M) Tris-HCl 5 mM, pH 7.4, 25 °C, $\lambda_{exc} = 450$ nm, $\lambda_{em} = 585$ nm.

 Table S5. Crystal data and structure refinement results for compound [PdLCl(DMSO)].

Chemical formula	$C_{18}H_{22}CIN_5O_3PdS_2$
Formula weight (g mol ⁻¹)	562.37
Temperature (K)	296(2)
Crystal system	monoclinic
Wavelength (Å)	0.71073
Space group	P1 21/c1
Crystal size (mm)	0.040 x 0.043 x 0.135
<i>a</i> (Å)	11.2627(6)
b (Å)	26.5445(12)
<i>c</i> (Å)	15.8940(7)
α (°)	90
<u>β(°)</u>	109.7256(14)
γ (°)	90
Volume (Å ³)	4472.9(4)
Ζ	8
Density, calculated (g cm ⁻³)	1.670
Absorption coefficient (mm ⁻¹)	1.166
F(000)	2272
θ range for data collection (°)	1.53 - 25.35
Reflections collected	70909
Independent reflections	8190 [R(int) = 0.1394]
Coverage of independent collections (%)	100.0
Data/restrains/parameters	8190 / 0 / 549
Goodness of fit on F ²	1.035
Final R indices $[I > 2\sigma(I)]$ / all data	$R1 = 0.0\overline{499} / 0.1260$
	wR2 = 0.1084 / 0.1643
Largest diff. peak and hole, (e Å ⁻³)	0.705 and -0.848

.