Electronic Supplementary Information (ESI)

The solvent-controlled Al₁₂-Oxo molecular ring and Al₂₄-Oxo

truncated metallo-cube

Ying Zou,^a Wei Lv,^a Zhen-Zhen Xue,^a Jin-Hua Li^a, Xiao-Yu Li,^{*a} and Guo-Ming Wang^{*a}

Fig. S1 The coordinated spatial positions of NAP⁻ ligands, OH⁻ and CH₃O⁻ in Al₂₄ cluster.

Table S1. The formulas assignment of two sets of species of the

negative-ion E	SI-MS of Alz	24 in CH ₃ OH	/CH ₂ Cl ₂ solution.
----------------	--------------	--------------------------	--

Species	Peak assignment	Exp.m/z	Sim. <i>m/z</i>
1a	$[Al_{24}(OH)_{34}(CH_3O)_{26}(NAP)_{11}(H_2O)_4Cl_3]^{2-1}$	2045.78	2045.70
1b	$[Al_{24}(OH)_{34}(CH_3O)_{23}(NAP)_{11}(H_2O)_4Cl_6]^{2-1}$	2052.20	2052.21
1c	$[Al_{24}(OH)_{32}(CH_3O)_{28}(NAP)_{11}(H_2O)_4Cl_3]^{2-}$	2059.79	2059.72
1d	$[Al_{24}(OH)_{32}(CH_{3}O)_{25}(NAP)_{11}(H_{2}O)_{4}Cl_{6}]^{2}$	2066.22	2066.27
1e	$[Al_{24}(OH)_{31}(CH_{3}O)_{30}(NAP)_{11}(H_{2}O)_{1}Cl_{4}H_{2}]^{2}$	2073.79	2073.74
1f	[Al ₂₄ (OH) ₃₁ (CH ₃ O) ₃₁ (NAP) ₁₁ Cl ₄ H ₃] ²⁻	2080.79	2080.75
1g	$[Al_{24}(OH)_{34}(CH_{3}O)_{23}(NAP)_{11}(H_{2}O)_{6}Cl_{7}H_{1}]^{2}$	2088.20	2088.25
2a	[Al ₂₂ (OH) ₂₃ (CH ₃ O) ₂₅ (NAP) ₁₂ (H ₂ O) ₂ Cl ₇] ⁻	4097.45	4097.41
2b	[Al ₂₂ (OH) ₂₃ (CH ₃ O) ₂₆ (NAP) ₁₂ (H ₂ O) ₁ Cl ₇ H ₁] ⁻	4111.47	4111.43
2c	[Al ₂₂ (OH) ₂₃ (CH ₃ O) ₂₇ (NAP) ₁₂ Cl ₇ H ₂] ⁻	4125.48	4125.44

Table S2. The formulas assignment of two sets of species of the positive-ion ESI-MS of Al₂₄ in CH₃OH/CH₂Cl₂ solution.

	1	1	1
Species	Peak assignment	Exp.m/z	Sim.m/z
1a	$[Al_{24}(OH)_{32}(CH_{3}O)_{25}(NAP)_{10}Cl_{5}(H_{2}O)_{5}H_{2}]^{2+}$	1974.24	1974.23
1b	$[Al_{24}(OH)_{32}(CH_{3}O)_{26}(NAP)_{10}Cl_{5}(H_{2}O)_{4}H_{3}]^{2+}$	1981.25	1981.25
1c	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₆ (NAP) ₁₀ Cl ₅ (H ₂ O) ₃ (CH ₃ OH) ₁ H ₃]	1988.26	1988.25
	2+		
1d	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₆ (NAP) ₁₀ Cl ₅ (H ₂ O) ₂ CH ₃ OH) ₂ H ₃] ²	1995.27	1995.26
	+		
1e	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₆ (NAP) ₁₀ Cl ₅ (H ₂ O) ₁ (CH ₃ OH) ₃ H ₃]	2002.28	2002.26
	2+		
lf	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₆ (NAP) ₁₀ Cl ₅ (CH ₃ OH) ₄ H ₃] ²⁺	2009.28	2009.27
2a	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₆ (NAP) ₁₀ Cl ₅ (H ₂ O) ₁ (CH ₃ CN) ₂ (C	2043.29	2043.29
	$H_{3}OH)_{3}H_{3}]^{2+}$		
2b	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₆ (NAP) ₁₀ Cl ₅ (CH ₃ CN) ₂ (CH ₃ OH) ₄	2050.30	2050.30
	$[H_3]^{2+}$		
2c	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₂ (H ₂ O) ₃] ²⁺	2057.31	2057.30
2d	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₂ (H ₂ O) ₂ (CH ₃ OH) ₁] ²⁺	2064.32	2064.30
2e	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₂ (H ₂ O) ₁ (CH ₃ OH) ₂] ²⁺	2071.33	2071.31
2f	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₂ (CH ₃ OH) ₃] ²⁺	2078.33	2078.32
2g	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₅ (NAP) ₁₂ Cl ₁ (H ₂ O) ₁ (CH ₃ OH) ₃] ²⁺	2085.34	2085.35
3a	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₂ (H ₂ O) ₅ (CH ₃ CN) ₁ (C	2111.84	2111.83
	$[H_{3}OH)_{1}]^{2+}$		
3b	$[Al_{24}(OH)_{32}(CH_{3}O)_{24}(NAP)_{12}Cl_{2}(H_{2}O)_{3}(CH_{3}CN)_{3}]^{2+}$	2119.35	2119.34
3c	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₂ (H ₂ O) ₂ (CH ₃ CN) ₃ (C	2126.36	2126.35
	$H_{3}OH)_{1}]^{2+}$		
3d	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₃ (H ₂ O) ₄ (CH ₃ OH) ₃ H ₁]	2132.87	2132.83

	2+		
3e	$[Al_{24}(OH)_{32}(CH_{3}O)_{24}(NAP)_{12}Cl_{4}(H_{2}O)_{1}(CH_{3}OH)_{4}H_{2}]$	2140.38	2140.32
	2+		
3f	$[Al_{24}(OH)_{32}(CH_{3}O)_{24}(NAP)_{12}Cl_{4}(CH_{3}OH)_{5}H_{2}]^{2+}$	2147.38	2147.32
3g	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₅ (NAP) ₁₁ Cl ₄ (H ₂ O) ₃ (CH ₃ CN) ₄ (C	2154.39	2154.35
	$H_3OH)_3H_2]^{2+}$		
4a	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₂ (H ₂ O) ₃ (CH ₃ CN) ₄ (C	2187.90	2187.89
	$H_{3}OH)_{3}]^{2+}$		
4b	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₂ (H ₂ O) ₂ (CH ₃ CN) ₄ (C	2194.91	2194.90
	$[H_3OH)_4]^{2+}$		
4c	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₂ (H ₂ O) ₁ (CH ₃ CN) ₄ (C	2201.91	2201.91
	$[H_3OH)_5]^{2+}$		
4d	[Al ₂₄ (OH) ₃₂ (CH ₃ O) ₂₄ (NAP) ₁₂ Cl ₂ (CH ₃ CN) ₄ (CH ₃ OH) ₆	2208.92	2208.91
] ²⁺		
4e	$[Al_{24}(OH)_{32}(CH_{3}O)_{24}(NAP)_{13}Cl_{1}(H_{2}O)_{6}(CH_{3}OH)_{4}]^{2+}$	2216.43	2216.40

Fig. S2 The negative-ion ESI-MS of Al₁₂ in CH₃OH/CH₂Cl₂

Table	S3.	The	formulas	assignment	of	two	sets	of	species	of	Al_{12}	in
-------	------------	-----	----------	------------	----	-----	------	----	---------	----	-----------	----

CH ₃ OH/CH ₂ Cl ₂	solution.
--	-----------

Species	Peak assignment	Exp.m/z	Sim.m/z
1a	$[Al_{12}(CH_3O)_{17}(NAP)_{17}(H_2O)_8]^{2+}$	1953.40	1953.48
1b	$[Al_{12}(CH_{3}O)_{16}(NAP)_{18}(H_{2}O)_{1}]^{2+}$	1960.40	1960.45
1c	$[Al_{12}(CH_3O)_{17}(NAP)_{18}H_1]^{2+}$	1967.40	1967.46
1d	$[A1_{12}(CH_{3}O)_{20}(NAP)_{17}(H_{2}O)_{5}H_{3}]^{2+}$	1974.42	1974.50
1e	$[Al_{12}(CH_3O)_{21}(NAP)_{17}(H_2O)_4H_4]^{2+}$	1981.43	1981.51
lf	$[Al_{11}(CH_3O)_{12}(NAP)_{19}(H_2O)_3]^{2+}$	1988.42	1988.46
1g	$[Al_{11}(CH_3O)_{13}(NAP)_{19}(H_2O)_2H_1]^{2+}$	1995.43	1995.47
1h	$[Al_{11}(CH_3O)_{14}(NAP)_{19}(H_2O)_1H_2]^{2+}$	2002.44	2002.47
1i	$[Al_{11}(CH_3O)_{15}(NAP)_{19}H_3]^{2+}$	2009.44	2009.48
1j	$[Al_{10}(CH_3O)_8(NAP)_{20}(H_2O)_5]^{2+}$	2016.46	2016.50
2a	$[A1_{13}(CH_{3}O)_{20}(NAP)_{19}(H_{2}O)_{1}H_{2}]^{2+}$	2122.54	2122.51
2b	$[Al_{13}(CH_{3}O)_{21}(NAP)_{19}H_{3}]^{2+}$	2129.55	2129.52
2c	$[Al_{12}(CH_{3}O)_{14}(NAP)_{20}(H_{2}O)_{5}]^{2+}$	2136.56	2136.50
2d	$[Al_{12}(CH_3O)_{15}(NAP)_{20}(H_2O)_4H_1]^{2+}$	2143.56	2143.51
2e	$[Al_{12}(CH_{3}O)_{16}(NAP)_{20}(H_{2}O)_{3}H_{2}]^{2+}$	2150.57	2150.52
2f	$[Al_{12}(CH_3O)_{17}(NAP)_{20}(H_2O)_2H_3]^{2+}$	2157.58	2157.52
3a	$[A1_{14}(CH_{3}O)_{20}(NAP)_{20}(H_{2}O)_{9}]^{2+}$	2292.59	2292.56
3b	$[A1_{14}(CH_{3}O)_{21}(NAP)_{20}(H_{2}O)_{8}H_{1}]^{2+}$	2299.58	2299.57
3c	$[Al_{14}(CH_{3}O)_{22}(NAP)_{20}(H_{2}O)_{7}H_{2}]^{2+}$	2306.60	2306.57
3d	$[Al_{14}(CH_{3}O)_{23}(NAP)_{20}(H_{2}O)_{6}H_{3}]^{2+}$	2313.60	2313.58
3e	$[Al_{14}(CH_{3}O)_{24}(NAP)_{20}(H_{2}O)_{5}H_{4}]^{2+}$	2320.61	2320.59
3f	$[A1_{14}(CH_{3}O)_{25}(NAP)_{20}(H_{2}O)_{4}H_{5}]^{2+}$	2327.62	2327.60

D-H	<i>d</i> (D-H)	<i>d</i> (H···A)	<d-h-a< th=""><th><i>d</i>(D····A)</th><th>А</th></d-h-a<>	<i>d</i> (D····A)	А
O1-H1	0.95	2.321	161.53	3.236	C12
O8-H8	0.95	2.353	163.88	3.276	Cl1
09-Н9	0.95	2.301	162.68	3.22	Cl1
O10-H10	0.95	2.318	163.89	3.241	C12
O11-H11	0.95	2.337	163.44	3.259	C12
O12-H12	0.95	2.331	163.05	3.251	Cl2 [-x+1, -y+1, -z+1]
013-Н13	0.95	2.345	165.17	3.272	C13
O15-H15	0.95	2.379	164.55	3.304	C13
O16-H16	0.95	2.3	165.46	3.228	Cl1 [-x+1, -y+1, -z+1]
O22-H22	0.95	2.296	162.42	3.214	C13
О23-Н23	0.95	2.325	161.25	3.239	Cl1
О32-Н32	0.95	2.26	161.17	3.174	C13

Table S4. The hydrogen bond interactions of cluster Al₂₄.

Fig. S3 The solid-state ultraviolet-visible absorption spectra (UV-Vis) of HNAP and Al₂₄, HNAP and Al₁₂ under room temperature.

Fig. S4 Absorption spectra of Al₂₄ and Al₁₂ derived from the diffuse reflectance spectra through Kubelka-Munk function.

Fig. S5 The emission and excitation spectra of the powder samples of HNAP, Al₂₄ and Al₁₂ under room temperature.

Fig. S6 CIE chromatic coordinates of Al₂₄(a) and Al₁₂(b).

Table S	5. The	e corresponding	chromaticity	coordinates	of	Al ₂₄	and

Al₁₂.

	Al ₂₄		A	l ₁₂	
	Х	у	Х	у	
300K	0.1571	0.0614	0.1623	0.053	
270K	0.1575	0.0588	0.1631	0.0525	
240K	0.158	0.0565	0.1637	0.0549	
210K	0.159	0.0555	0.1644	0.0572	
180K	0.1598	0.0548	0.1658	0.061	
150K	0.1609	0.0562	0.1672	0.0646	
120K	0.1618	0.0577	0.169	0.0695	
90K	0.1625	0.0591	0.17	0.0726	

Fig. S7 The packing structures of Al₁₂(a) and Al₂₄(b).

Fig. S8 The IR spectra of Al₂₄ (a), Al₁₂ (b), and IR of the crystal after soaking in different solvents (c, d).

Fig. S9 The simulated and experimental PXRD of Al₂₄ and the crystal after soaking in different solvents for 24h.

Fig. S10 The simulated and experimental PXRD of Al_{12} and the crystal after soaking in different solvents from 1d to 30d.

Fig. S11 The TGA of Al₂₄ and Al₁₂.

Fig. S12 Microscope photographs of crystals of Al₂₄(a) and Al₁₂(b).

Identification code	Al ₂₄	Al ₁₂
Empirical formula	C ₁₅₈ H ₂₀₂ Al ₂₄ Cl ₆ O ₈₄	C ₁₇₀ H ₁₉₆ Al ₁₂ N ₄ O ₅₆
Formula weight	4305.51	3515.14
Temperature/K	120.00(10)	293(2)
Crystal system	monoclinic	triclinic
Space group	$P2_1/n$	<i>P</i> -1
a/Å	22.4243(8)	14.9026(6)
b/Å	20.9573(4)	17.4708(5)
c/Å	26.8950(5)	18.5727(3)
α/°	90	100.822(2)
β/°	97.007(2)	92.904(2)
γ/°	90	101.735(3)
Volume/Å ³	12545.0(6)	4630.4(2)
Ζ	2	1
$\rho_{calc}g/cm^3$	1.113	1.121
μ/mm ⁻¹	2.06	1.196
F(000)	4356	1634.0
Radiation	Cu Ka	Cu Ka
	$(\lambda = 1.54184)$	$(\lambda = 1.54184)$
2Θ range for data collection/°	5.362 to 154.214	4.864 to 154.856
Index ranges	$-23 \le h \le 28$,	$-18 \le h \le 18$,
	$-25 \le k \le 26,$	$-21 \le k \le 22,$
	$-33 \le 1 \le 32$	$-15 \le 1 \le 23$
Reflections collected	83142	58907
Independent reflections	23912	18569
	$[R_{int} = 0.0376, R_{sigma} =$	$[R_{int} = 0.0480, R_{sigma} =$
	0.0366]	0.0354]
Data/restraints/parameters	23912/584/1162	18569/108/959
Goodness-of-fit on F ²	0.993	1.043
Final R indexes [I>=2 σ (I)]	$R_1 = 0.1026,$	$R_1 = 0.0875,$
	$wR_2 = 0.2768$	$wR_2 = 0.2687$
Final R indexes [all data]	$R_1 = 0.1667,$	$R_1 = 0.1091,$
	$wR_2 = 0.3528$	$wR_2 = 0.2983$
Largest diff. peak/hole / e Å ⁻³	0.45/-0.23	1.05/-0.55

Table S6. Crystal data for Al₂₄ and Al₁₂.

	Α	l ₂₄	
Al106	1.987 (4)	A16—O34	1.839 (5)
Al1-012	1.881 (5)	A16—O36	1.859 (5)
Al1—O20	1.855 (4)	Al7—015	1.883 (6)
Al1—O22	1.874 (4)	Al7—016	1.867 (4)
Al1—025	1.889 (6)	Al7—O35	1.861 (4)
Al1	1.927 (4)	A17—O37 ⁱ	1.867 (7)
A12—O4	1.972 (3)	A17—O38	1.908 (5)
Al2—014	1.849 (4)	A18—O10	1.850 (4)
Al2—015	1.869 (4)	A18—O13	1.860 (4)
Al2—016	1.881 (5)	A18—O18	1.860 (5)
Al2—018	1.875 (6)	Al8—019	1.874 (4)
Al2—O40	1.926 (4)	A18—O26	1.957 (7)
Al3—O1 ⁱ	1.868 (5)	A19—O3 ⁱ	1.958 (5)
Al3—O5 ⁱ	1.915 (4)	A19—011	1.890 (5)
Al3—06	1.971 (4)	A19—O21	1.854 (4)
Al3—09	1.887 (4)	A19—O23	1.866 (4)
Al3—017	1.860 (5)	A19—O24	1.919 (6)
Al3—O20	1.849 (4)	A19—O37	1.852 (5)
Al4—04	1.973 (3)	Al10—O17	1.865 (4)
Al4—07	1.914 (4)	Al10—O25	1.855 (5)
Al4—O9 ⁱ	1.851 (5)	Al10—O27	1.942 (6)
Al4—014	1.885 (4)	Al10—O32	1.856 (4)
Al4—019	1.893 (5)	Al11—011	1.823 (5)
Al5—012	1.856 (4)	Al11—O23	1.872 (4)
Al5—O21 ⁱ	1.898 (5)	Al11—O28	1.918 (5)
A15—O22	1.867 (6)	Al11—O29	1.859 (5)
Al5—O31	1.908 (4)	Al11—O34	1.866 (5)
Al5—O35	1.856 (4)	Al12—013	1.886 (5)
Al6—08	1.835 (4)	Al12—O29	1.881 (5)
Al6—O32	1.853 (5)	Al12—O36	1.869 (5)
Al6-033	1.939 (5)	Al12—O39	1.952 (5)
012—Al1—O6	99.72 (18)	O15—A17—O3	97.01 (18)
012—Al1—O25	169.90 (18)	015—Al7—O38	93.6 (2)
O12—Al1—O30	93.0 (2)	O16—A17—O3	98.48 (16)
020—Al1—O6	78.24 (15)	O16—A17—O15	76.80 (19)
O20—A11—O12	95.4 (2)	O16—Al7—O37 ⁱ	94.5 (2)
O20—Al1—O22	170.4 (2)	O16—A17—O38	93.65 (18)
020—Al1—O25	93.9 (2)	035—Al7—O3	77.84 (16)

Table S7. Selected bond distances (Å) and angles (°) for Al_{24} and Al_{12} .

O20—A11—O30	90.70 (18)	O35—A17—O15	94.0 (2)
022—Al1—O6	99.36 (16)	O35—A17—O16	169.7 (2)
022—Al1—O12	75.7 (2)	O35—A17—O37 ⁱ	94.2 (2)
022—Al1—025	94.8 (2)	O35—A17—O38	91.50 (19)
O22—Al1—O30	93.43 (18)	O37 ⁱ —Al7—O3	78.4 (2)
O25—Al1—O6	78.43 (18)	O37 ⁱ —Al7—O15	169.6 (2)
O25—Al1—O30	90.7 (2)	O37 ⁱ —A17—O38	92.7 (2)
O30—A11—O6	163.8 (2)	O38—A17—O3	165.4 (2)
014—Al2—O4	78.49 (15)	O10—A18—O4	99.45 (19)
014—Al2—O15	169.9 (3)	O10—A18—O13	75.96 (17)
O14—Al2—O16	93.8 (2)	O10—A18—O18	170.26 (18)
O14—Al2—O18	94.5 (2)	O10—A18—O19	94.08 (18)
O14—Al2—O40	92.27 (18)	O10—A18—O26	91.9 (2)
015—Al2—O4	99.26 (16)	O13—A18—O4	99.42 (18)
015—Al2—O16	76.8 (2)	O13—A18—O19	169.67 (19)
015—Al2—O18	94.7 (2)	O13—A18—O26	91.5 (2)
O15—Al2—O40	91.94 (18)	O18—A18—O4	78.8 (2)
016—Al2—O4	99.74 (17)	O18—A18—O13	94.78 (18)
O16—Al2—O40	93.3 (2)	O18—A18—O19	95.00 (19)
018—Al2—O4	78.48 (18)	O18—A18—O26	91.4 (2)
O18—Al2—O16	171.00 (19)	O19—A18—O4	79.26 (18)
O18—Al2—O40	90.0 (2)	O19—A18—O26	91.6 (2)
O40—A12—O4	164.5 (2)	O26—A18—O4	165.8 (2)
O1 ⁱ —Al3—O5 ⁱ	94.1 (2)	011—Al9—O3 ⁱ	99.81 (18)
01 ⁱ —Al3—O6	99.65 (17)	O11—A19—O24	93.1 (2)
01 ⁱ —Al3—O9	75.80 (19)	O21—A19—O3 ⁱ	80.55 (19)
O5 ⁱ —A13—O6	163.6 (2)	O21—Al9—O11	94.8 (2)
09—Al3—O5 ⁱ	92.51 (18)	O21—A19—O23	169.5 (2)
09—A13—O6	99.38 (15)	O21—A19—O24	89.5 (2)
017—Al3—O1 ⁱ	168.82 (17)	O23—A19—O3 ⁱ	98.46 (17)
017—Al3—O5 ⁱ	89.9 (2)	O23—A19—O11	74.97 (18)
017—Al3—O6	78.21 (18)	O23—A19—O24	93.5 (2)
017—Al3—O9	93.6 (2)	O24—A19—O3 ⁱ	164.3 (2)
O20—Al3—O1 ⁱ	96.1 (2)	O37—A19—O3 ⁱ	79.3 (2)
O20—A13—O5 ⁱ	91.05 (17)	O37—A19—O11	169.6 (2)
O20—A13—O6	78.80 (16)	O37—A19—O21	95.2 (2)
O20—A13—O9	171.3 (2)	O37—A19—O23	94.90 (19)
O20—A13—O17	94.3 (2)	O37—A19—O24	89.6 (2)
01—Al4—O4	98.52 (15)	O8—Al10—O6	99.35 (18)
01—Al4—07	93.96 (17)	O8—Al10—O27	92.7 (2)
01—A14—014	170.9 (2)	O17—Al10—O6	78.1 (2)

01—Al4—O19	94.3 (2)	017—Al10—08	94.04 (18)
07—Al4—O4	164.5 (2)	O17—Al10—O27	90.8 (2)
09 ⁱ —Al4—O1	76.92 (19)	O25—Al10—O6	79.7 (2)
09 ⁱ —Al4—O4	99.25 (16)	O25—A110—O8	170.75 (19)
09 ⁱ —Al4—O7	92.5 (2)	O25—Al10—O17	94.77 (19)
09 ⁱ —Al4—O14	95.4 (2)	O25—A110—O27	90.0 (2)
09 ⁱ —Al4—O19	170.65 (19)	O25—Al10—O32	95.87 (19)
014—Al4—O4	77.62 (15)	O27—Al10—O6	164.15 (19)
014—Al4—07	91.29 (17)	O32—Al10—O6	99.71 (19)
014—Al4—019	93.1 (2)	O32—Al10—O8	75.16 (17)
019—Al4—O4	78.78 (17)	O32—A110—O17	168.58 (19)
019—Al4—07	91.20 (19)	O32—A110—O27	93.3 (2)
012—A15—O3	98.75 (16)	011—Al11—O2	98.9 (2)
012—A15—O21 ⁱ	94.0 (2)	O11—A111—O23	76.42 (19)
012—A15—O22	76.4 (2)	O11—Al11—O28	93.3 (2)
012—Al5—O31	93.15 (17)	011—Al11—O29	93.4 (2)
012—A15—O35	170.3 (2)	011—Al11—O34	170.7 (2)
O21 ⁱ —A15—O3	79.26 (18)	O23—Al11—O2	99.16 (18)
O21 ⁱ —A15—O31	90.0 (2)	O23—Al11—O28	93.7 (2)
O22—A15—O3	98.16 (17)	O28—A111—O2	164.0 (3)
022—A15—O21 ⁱ	169.7 (2)	O29—A111—O2	78.75 (18)
022—A15—O31	94.3 (2)	O29—A111—O23	169.3 (2)
O31—A15—O3	164.4 (2)	O29—Al11—O28	90.4 (2)
035—A15—O3	78.25 (17)	O29—Al11—O34	94.4 (2)
O35—A15—O21 ⁱ	94.5 (2)	O34—A111—O2	77.7 (2)
O35—A15—O22	94.8 (2)	O34—A111—O23	95.4 (2)
O35—A15—O31	91.56 (18)	O34—A111—O28	91.7 (2)
08—Al6—O2	98.95 (19)	O10—A112—O2	99.9 (2)
O8—A16—O32	76.09 (17)	O10—A112—O13	75.26 (18)
08—A16—O33	92.9 (2)	O10—A112—O29	96.10 (19)
08—A16—O34	94.9 (2)	O10—A112—O36	169.4 (2)
08—A16—O36	171.2 (2)	O10—A112—O39	92.7 (2)
O32—A16—O2	97.91 (19)	O13—Al12—O2	97.70 (18)
O32—A16—O33	93.0 (2)	O13—Al12—O39	94.6 (2)
O32—A16—O36	96.0 (2)	O29—A112—O2	78.92 (18)
O33—A16—O2	165.5 (2)	O29—Al12—O13	170.2 (2)
O34—A16—O2	79.2 (2)	O29—Al12—O39	90.4 (2)
O34—A16—O32	170.1 (2)	O36—A112—O2	77.81 (19)
O34—A16—O33	91.5 (2)	O36—A112—O13	94.7 (2)
O34—A16—O36	92.7 (2)	O36—A112—O29	93.6 (2)
O36—Al6—O2	78.25 (19)	O36—A112—O39	91.4 (2)
O36—Al6—O33	91.1 (2)	O39—A112—O2	164.2 (2)

Symmetry code: (i) $-x+1, -y+1, -z+1$.					
Al ₁₂					
Al1-01	1.946 (3)	Al4—O10	1.936 (3)		
Al1—O3	1.861 (2)	Al4—011	1.878 (3)		
Al1—04	1.871 (3)	Al4—O12	1.874 (3)		
Al1—O22 ⁱ	1.933 (3)	Al4—O13	1.927 (3)		
Al1—O23 ⁱ	1.876 (3)	Al4—O15	1.861 (2)		
Al1024 ⁱ	1.865 (2)	Al4—O16	1.882 (3)		
Al2—O2	1.923 (3)	Al5—O14	1.924 (3)		
Al2—O3	1.872 (3)	A15—O15	1.873 (3)		
Al2—O4	1.886 (2)	Al5—O16	1.868 (3)		
A12—O5	1.927 (2)	A15—O17	1.874 (2)		
Al2—07	1.863 (3)	A15—O18	1.932 (3)		
Al2—08	1.875 (3)	A15—O20	1.875 (2)		
Al3—O6	1.924 (2)	Al6—017	1.868 (2)		
Al3—07	1.877 (3)	Al6—O19	1.935 (3)		
Al3—08	1.862 (3)	A16—O20	1.879 (3)		
Al3—09	1.924 (3)	Al6—O21	1.937 (3)		
Al3—011	1.876 (3)	A16—O23	1.850 (2)		
Al3—012	1.867 (2)	Al6—O24	1.886 (3)		
03—Al1—O1	92.59 (12)	011—Al4—O10	91.85 (12)		
O3—A11—O4	77.94 (11)	011—Al4—O13	92.08 (12)		
O3—A11—O22 ⁱ	91.70 (11)	011—Al4—O16	99.69 (12)		
O3—Al1—O23 ⁱ	98.37 (12)	012—Al4—O10	89.83 (12)		
O3—A11—O24 ⁱ	174.72 (13)	012—Al4—011	77.58 (11)		
04—Al1—O1	89.67 (12)	O12—A14—O13	168.76 (11)		
04—Al1—O22 ⁱ	168.05 (11)	O12—Al4—O16	96.64 (12)		
O4—Al1—O23 ⁱ	97.74 (12)	O13—Al4—O10	86.06 (13)		
022 ⁱ —Al1—O1	84.82 (12)	O15—Al4—O10	91.16 (12)		
023 ⁱ —A11—O1	167.83 (12)	015—Al4—O11	174.80 (12)		
O23 ⁱ —Al1—O22 ⁱ	89.57 (12)	O15—Al4—O12	98.18 (11)		
O24 ⁱ —Al1—O1	91.55 (11)	O15—Al4—O13	92.36 (12)		
O24 ⁱ —Al1—O4	98.82 (11)	O15—Al4—O16	77.66 (11)		
O24 ⁱ —Al1—O22 ⁱ	91.94 (12)	O16—Al4—O10	167.75 (13)		
024 ⁱ —Al1—O23 ⁱ	77.83 (10)	O16—Al4—O13	89.38 (13)		
02—Al2—O5	84.96 (12)	014—Al5—O18	84.83 (13)		
O3—A12—O2	93.01 (13)	015—A15—O14	89.93 (12)		
O3—A12—O4	77.30 (10)	015—Al5—017	99.27 (11)		
O3—A12—O5	91.07 (11)	015—Al5—O18	167.14 (12)		
O3—A12—O8	98.64 (12)	015—A15—O20	97.65 (12)		
04—A12—O2	89.14 (11)	O16—Al5—O14	91.64 (12)		

04—A12—O5	166.68 (13)	016—Al5—015	77.69 (11)	
07—A12—O2	91.27 (12)	016—Al5—017	175.27 (12)	
07—A12—O3	174.75 (13)	O16—Al5—O18	90.69 (12)	
07—A12—O4	99.73 (11)	O16—A15—O20	99.70 (12)	
07—A12—O5	92.34 (12)	017—Al5—014	91.97 (12)	
07—Al2—O8	77.39 (12)	017—Al5—O18	92.66 (12)	
08—Al2—O2	167.26 (13)	O17—A15—O20	77.01 (11)	
08—Al2—O4	98.39 (12)	O20—A15—O14	167.46 (12)	
08—Al2—O5	89.68 (12)	O20—A15—O18	89.67 (12)	
07—Al3—O6	89.86 (12)	O17—A16—O19	92.89 (12)	
07—Al3—O9	167.23 (14)	O17—A16—O20	77.05 (11)	
08—Al3—O6	92.30 (12)	O17—A16—O21	92.77 (11)	
08—Al3—O7	77.38 (12)	O17—A16—O24	99.16 (11)	
08—Al3—O9	91.15 (13)	O19—A16—O21	84.68 (12)	
08—Al3—O11	174.68 (11)	O20—A16—O19	89.12 (12)	
08—Al3—Ol2	98.14 (11)	O20—A16—O21	167.82 (12)	
09—Al3—O6	84.95 (12)	O20—A16—O24	98.74 (12)	
011—Al3—O6	92.09 (11)	O23—A16—O17	174.59 (12)	
011—Al3—07	99.63 (12)	O23—A16—O19	90.46 (12)	
011—Al3—O9	92.23 (13)	O23—A16—O20	98.77 (12)	
012—Al3—O6	168.10 (13)	O23—A16—O21	91.76 (11)	
012—Al3—07	97.96 (11)	O23—A16—O24	77.94 (11)	
012—Al3—O9	89.12 (12)	O24—A16—O19	166.81 (11)	
012—Al3—011	77.82 (11)	O24—A16—O21	89.38 (12)	
Symmetry code: (i) $-x+1$, $-y+1$, $-z+2$.				