Electronic Supplementary Information

β -(C₃H₇N₆)₂Cl₂·H₂O and (C₃H₇N₆)F·H₂O: two UV birefringent crystals induced

by the uniformly aligned structural groups

Yaoguo Shen, *a Liang Ma,^b Guofa Dong, *^b Hualiang Yu^a and Junhua Luo^c

Contents

Fig. S1 The as-grown crystals for (a) MELCl and (b) MELF.	.S2
Fig. S2 Infrared spectra for (a) MELCl and (b) MELF.	.S2
Fig. S3 Electronic band structures for (a) MELCl and (b) MELF	.S3
Fig. S4 The crystal thickness for the birefringence measurements.	.S3
Table S1. Atomic Coordinates and Isotropic Displacement Parameters for β -(C ₃ H ₇ N ₆) ₂ Cl ₂ ·H ₂ O.	S4
Table S2. Anisotropic Displacement Parameters for β -(C ₃ H ₇ N ₆) ₂ Cl ₂ ·H ₂ O	.S5
Table S3. Bond Lengths for β -(C ₃ H ₇ N ₆) ₂ Cl ₂ ·H ₂ O	.S5
Table S4. Bond Angles for β -(C ₃ H ₇ N ₆) ₂ Cl ₂ ·H ₂ O.	.S6
Table S5. Atomic Coordinates and Isotropic Displacement Parameters for (C3H7N6)F·H2O	.S7
Table S6. Anisotropic Displacement Parameters for (C ₃ H ₇ N ₆)F·H ₂ O.	.S7
Table S7. Bond Lengths for $(C_3H_7N_6)F \cdot H_2O$.	.S7
Table S8. Bond Angles for (C ₃ H ₇ N ₆)F·H ₂ O	.S8
Table S9. Hydrogen Bonds for (C ₃ H ₇ N ₆)F·H ₂ O	.S8

^a. College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China. Email: shenyg@mju.edu.cn

^b Department of Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China. Email: gfdong@mju.edu.cn

^c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

Fig. S1 The as-grown crystals for (a) MELCl and (b) MELF.

Fig. S2 Infrared spectra for (a) MELCl and (b) MELF.

Fig. S3 Electronic band structures for (a) MELCl and (b) MELF.

Fig. S4 The crystal thickness for the birefringence measurements (a) MELCl and (b) MELF.

Atom	x	У	Ζ	U(eq)
Cl	7067.5(9)	5000	772(2)	56.6(4)
Cl2	9431.1(9)	5000	7140.8(14)	44.5(3)
01	6601(3)	5000	4871(6)	70.8(10)
N1	5000	1566.0(14)	5000	32.3(6)
N2	3108.4(17)	1556.4(10)	4795(3)	37.5(5)
N3	4013.0(15)	2702.5(9)	4938(3)	24.7(4)
N4	5000	3798.2(14)	5000	41.3(8)
C1	4028.7(18)	1954.7(11)	4909(3)	24.7(5)
C2	5000	3052.5(16)	5000	24.0(6)
N5	10000	6522.8(13)	0	30.8(6)
N6	8123.8(17)	6518.0(10)	-116(3)	37.4(5)
N7	9011.2(15)	7659.4(9)	-68(3)	24.3(4)
N8	10000	8755.3(14)	0	38.7(7)
C3	9035.7(18)	6910.6(11)	-62(3)	24.1(5)
C4	10000	8009.2(15)	0	23.4(6)
H1A	6628.99	5000	3567.86	85
H1B	7372.59	5000	5987.16	85
H1	5000	1079.38	5000	39
H2A	2483.03	1782.66	4735.54	45
H2B	3132.33	1070.26	4777.64	45
H4A	5607.2	4041.56	5038	50
H4B	4392.8	4041.56	4962	50
Н5	10000	6036.18	0	37
H6A	7505.3	6748.06	-157.77	45
H6B	8146.5	6031.66	-111.07	45
H8A	9391.9	8998.61	-42	46
H8B	10608.1	8998.61	42	46

Table S1. The Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for β -(C₃H₇N₆)₂Cl₂·H₂O. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cl	48.8(6)	20.2(4)	122.1(10)	0	56.9(6)	0
Cl2	56.4(6)	20.2(4)	47.2(6)	0	12.5(4)	0
01	49.0(18)	41.2(15)	134(3)	0	51(2)	0
N1	24.6(13)	17.2(12)	57.9(18)	0	20.3(13)	0
N2	26.6(10)	20.0(9)	72.1(15)	4.0(9)	27.0(10)	-1.3(7)
N3	22.9(9)	20.5(9)	35.5(11)	1.0(7)	17.2(8)	0.1(7)
N4	36.6(16)	20.3(13)	81(2)	0	38.9(16)	0
C1	22.2(11)	22.6(10)	30.4(11)	2.2(8)	12.4(9)	0.6(8)
C2	24.0(15)	21.7(13)	29.5(16)	0	14.3(13)	0
N5	28.6(14)	14.4(11)	53.8(18)	0	21.8(13)	0
N6	30.5(10)	21.7(9)	67.4(15)	0.9(9)	27.8(10)	-4.6(7)
N7	22.4(9)	19.0(8)	36.1(11)	0.8(7)	17.0(8)	-0.1(7)
N8	31.3(15)	17.7(12)	79(2)	0	34.9(15)	0
C3	23.0(11)	22.0(10)	28.9(11)	0.3(8)	12.6(9)	-1.4(8)
C4	23.4(15)	19.6(13)	31.3(16)	0	15.5(13)	0

Table S2. Anisotropic Displacement Parameters (Å²×10³) for β -(C₃H₇N₆)₂Cl₂·H₂O. The anisotropic displacement factor exponent takes the form: -2 π^2 [h²a^{*2}U₁₁+2hka*b*U₁₂+...].

Table S3. Bond Lengths for β -(C₃H₇N₆)₂Cl₂·H₂O.

1110111	Length/A	Atom Atom		Length/Å
C11	1.368(2)	N5	C3 ²	1.367(2)
C1	1.368(2)	N5	C3	1.367(2)
C1	1.317(3)	N6	C3	1.317(3)
C1	1.322(3)	N7	C3	1.324(3)
C2	1.359(2)	N7	C4	1.360(2)
C2	1.318(4)	N8	C4	1.319(4)
	C1 ¹ C1 C1 C1 C1 C2 C2 C2	$\begin{array}{ccc} & & & & \\ & & & \\ C1^1 & & & 1.368(2) \\ C1 & & & & 1.317(3) \\ C1 & & & & 1.322(3) \\ C2 & & & & 1.359(2) \\ C2 & & & & 1.318(4) \end{array}$	C1 ¹ 1.368(2) N5 C1 1.368(2) N5 C1 1.317(3) N6 C1 1.322(3) N7 C2 1.359(2) N7 C2 1.318(4) N8	C1 ¹ 1.368(2) N5 C3 ² C1 1.368(2) N5 C3 C1 1.317(3) N6 C3 C1 1.322(3) N7 C3 C2 1.359(2) N7 C4 C2 1.318(4) N8 C4

¹1-X,+Y,1-Z; ²2-X,+Y,-Z

Atom Atom Atom			Angle/°	Aton	n Ator	n Atom	Angle/°
C1	N1	C11	119.7(2)	C3	N5	C3 ²	119.8(2)
C1	N3	C2	115.87(18)	C3	N7	C4	115.80(18)
N2	C1	N1	117.55(19)	N6	C3	N5	118.10(19)
N2	C1	N3	121.13(19)	N6	C3	N7	120.55(19)
N3	C1	N1	121.32(19)	N7	C3	N5	121.35(18)
N3	C2	N3 ¹	125.9(2)	N7 ²	C4	N7	125.9(2)
N4	C2	N31	117.07(12)	N8	C4	N7	117.05(12)
N4	C2	N3	117.07(12)	N8	C4	N7 ²	117.05(12)

Table S4. Bond Angles for β -(C₃H₇N₆)₂Cl₂·H₂O.

¹1-X,+Y,1-Z; ²2-X,+Y,-Z

Atom	x	У	Z	U(eq)
sF1	6330(3)	5000	4930(7)	55.2(8)
01	3098(2)	10000	2131(7)	33.6(7)
N1	5000	6480.9(18)	5000	31.9(8)
N2	5999.4(18)	7691.1(12)	6870(6)	30.7(6)
N3	5000	8859.0(19)	5000	43.3(9)
N4	6905(2)	6473.9(14)	8532(6)	38.2(7)
C1	5984(2)	6892.1(15)	6802(6)	27.4(6)
C2	5000	8063(2)	5000	29.8(8)
H1A	2633.89	10128.6	3704.2	50
H1B	2852.29	10071.5	-68.7	50
H1	4999.99	5962.34	4999.98	38
H3A	4382.5	9118.3	3844.79	52
H3B	5617.5	9118.3	6155.21	52
H4B	7530.13	6717.77	9729.9	46
H4A	6884.8	5955.61	8468.93	46

Table S5. The Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (C₃H₇N₆)F·H₂O. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Table S6. Anisotropic Displacement Parameters (Å²×10³) for (C₃H₇N₆)F·H₂O. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F1	57.1(16)	29.4(13)	77.2(18)	0	1.7(14)	0
01	30.2(13)	24.0(13)	43.2(15)	0	-7.8(11)	0
N1	31.6(16)	20.6(15)	41.2(17)	0	-4.5(13)	0
N2	26.6(12)	25.1(12)	38.1(13)	0.4(9)	-5.3(10)	0.6(8)
N3	34.0(17)	23.5(17)	67(2)	0	-15.3(16)	0
N4	36.7(13)	26.0(12)	47.8(14)	3.3(10)	-10.2(11)	2.4(10)
C1	25.4(13)	26.1(14)	30.5(13)	1.3(10)	2.5(11)	0.8(10)
C2	26.1(17)	24.8(18)	37.0(19)	0	-2.0(15)	0

Table S7. Bond Lengths for (C₃H₇N₆)F·H₂O.

Atom Atom		Length/Å	Ator	n Atom	Length/Å
N1	C11	1.363(3)	N2	C2	1.354(3)
N1	C1	1.363(3)	N3	C2	1.320(5)
N2	C1	1.325(3)	N4	C1	1.311(3)
N2	C1	1.325(3)	N4	C1	1.311(3)
14.77					

 $^{1}1$ -X,+Y,1-Z

Table S8. Bond Angles for (C₃H₇N₆)F·H₂O.

Aton	n Ator	n Atom	Angle/°	Aton	n Ator	n Atom	Angle/°
C11	N1	C1	119.9(3)	N4	C1	N2	120.8(2)
C1	N2	C2	116.0(2)	N21	C2	N2	125.8(3)
N2	C1	N1	121.1(2)	N3	C2	N21	117.09(16)
N4	C1	N1	118.0(2)	N3	C2	N2	117.09(16)

¹1-X,+Y,1-Z

Table S9. Hydrogen Bonds for (C₃H₇N₆)F·H₂O.

DН	A	d(D-H)/Å	d(H–A)/Å	d(D-A)/Å	D-H-A/°
O1 H1A	F1 ¹	0.85	1.54	2.281(4)	144.0
N1 H1	F1	0.86	2.14	2.840(3)	138.2
N1 H1	F1 ²	0.86	2.14	2.840(3)	138.2
N3 H3A	01	0.86	2.05	2.888(3)	163.0
N3 H3B	012	0.86	2.05	2.888(3)	163.0
N4 H4A	F1	0.86	2.11	2.829(3)	140.5

¹-1/2+X,1/2+Y,+Z; ²1-X,+Y,1-Z