Supplementary Information

Ratiometric Fluorescence Probe based on Dual-Ligand

Lanthanide Metal-Organic Framework (MOF) for Sensitive

 Detection of Aluminium and Fluoride Ions in River and Tap WaterRunnan Wang ${ }^{\text {a,c }, ~ H a o ~ Z h a n g ~}{ }^{\text {c }}$, Sibo Wang ${ }^{\text {a }}$, Fanxu Meng ${ }^{\text {d }}$, Jing Sun ${ }^{*, b}$, Dawei Lou ${ }^{\text {c }}$, Zhongmin Su*, *
${ }^{a}$ School of Materials science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
${ }^{b}$ School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo functional Materials and Chemistry, Changchun, 130022, People's Republic of China.
${ }^{c}$ Department of Analytical Chemistry, Jilin Institute of chemical Technology, Financial support from the Key Laboratory of Fine Chemicals of Jilin Province is also acknowledged, Jilin, 132022, PR China.
${ }^{d}$ Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, 132022, PR China.

*correspondence: sj-cust@126.com; zmsu@nenu.edu.cn

Materials and measurement

2-Aminoterephthalic acid ($\mathrm{BDC}-\mathrm{NH}_{2}$), 2,5-Thiophenedicarboxylic acid (TDA) and N,NDimethylacetamide (DMA), Metal salts $\left(\mathrm{Eu}(\mathrm{NO})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}, \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}, \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}, \mathrm{KNO}_{3}, \mathrm{NaNO}_{3}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{AgNO}_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}, \mathrm{KF}, \mathrm{KCl}, \mathrm{KBr}$ and KI) were purchased from Aladdin BioChem Technology Co. Ltd. Shanghai, China. All the chemicals were commercially purchased and used without further purification.
Fluorescence spectrum analysises were performed on a HORIBA Fluoromax TCSPC fluorescence spectrometer. Powder X-ray diffraction (XRD) of the MOF samples were performed by using a Bruker D8 apparatus equipped with $\mathrm{Cu} \mathrm{k} \alpha$ radiation and recorded in the 2θ range of 5-60 under room conditions. The simulated powder patterns of Eu-BDC-NH2/TDA were calculated using Mercury 3.8 via CIF files. A Thermo Fisher Scientific Cahn thermogravimetric analyzer apparatus was implemented with a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ from room temperature to $800^{\circ} \mathrm{C}$ under a N_{2} atmosphere to determine the TGA curves of the MOF. Fourier transform infrared (FT-IR) spectroscopy was conducted on a Thermo Fisher Scientific Nicolet iS 50 spectrometer in the range of 4000-400 cm^{-1} with a powder sample on a KBr pellets. X-ray photoelectron spectra (XPS) was collected on a Thermo Fisher Scientific ESCALAB 250XI device. N_{2} adsorption-desorption isotherms were carried out by Micromeritics ASAP2020. The single crystal X-ray was measured on a Bruker APEX-II CCD diffractometer with graphite monochromatic Mo Ka radiation at 298 K , and the structure was solved by direct method and refined with the full matrix least-squares method on F2 embedded in SHELXTL program through using the Olex2 as the graphical interface. All hydrogen atoms were placed geometrically in ideal positions with a riding model, and all nonhydrogen atoms were refined by the anisotropic thermal parameters during the final cycles.

Fig.S1. (A) Fluorescence spectra and the fluorescence intensity ratio of $\mathrm{I}_{430} / \mathrm{I}_{621}$ (B) of Eu-BDCNH_{2} /TDA stored in room temperature within seven days.

Fig.S2. (A) Thermogravimetric analysis of Eu-BDC-NH $/$ /TDA. (B) Luminescence intensity of $\mathrm{Eu}-\mathrm{BDC}-\mathrm{NH}_{2} /$ TDA dispersed in different solvents.

Fig.S3. (A) Fluorescence spectra and the fluorescence intensity ratio of $\mathrm{I}_{430} / \mathrm{I}_{621}$ (B) of Eu-BDC$\mathrm{NH}_{2} /$ TDA towards Al^{3+} at different response time.

Fig.S4. (A) Fluorescence spectra and the fluorescence intensity ratio of $\mathrm{I}_{430} / \mathrm{I}_{621}$ (B) of Eu-BDC$\mathrm{NH}_{2} /$ TDA towards F^{-}at different response time.

Fig.S5. (A) Fluorescence emission spectra of $\mathrm{BDC}-\mathrm{NH}_{2}$ in the presence of different concentrations of Al^{3+}. (B) Linear relationship between the $\mathrm{I}_{430} / \mathrm{I}_{621}$ and concentration of Al^{3+} in the range of $0-$ $1000 \mu \mathrm{M}$.

Fig.S6. (A) Fluorescence emission spectra of $\mathrm{BDC}-\mathrm{NH}_{2}$ in the presence of different concentrations of F^{-}. (B) Linear relationship between the $\mathrm{I}_{430} / \mathrm{I}_{621}$ and concentration of F^{-}in the range of $0-1000$ $\mu \mathrm{M}$.
(A)

(B)

Fig.S7. (A) CIE chromaticity diagram of $\mathrm{BDC}-\mathrm{NH}_{2}$ in the presence of different concentrations of Al^{3+} and $\mathrm{F}^{-}(\mathrm{B})$ from 0 to $1000 \mu \mathrm{M}$.

Fig.S8. (A) The fluorescence of Eu-BDC- $\mathrm{NH}_{2} /$ TDA responding to different halide ion. (B) The fluorescence of Eu-BDC- $\mathrm{NH}_{2} / \mathrm{TDA}$ responding to F^{-}with other different halide ion as the interference. (C) The fluorescence intensity of $\mathrm{I}_{430} / \mathrm{I}_{621}$ of Eu-BDC-NH2/TDA and treated with various halide ion and the coexistence of F^{-}.

Fig.S9. (A) N_{2} adsorption-desorption isotherms of Eu-BDC- $\mathrm{NH}_{2} / \mathrm{TDA}$ and (B) $\mathrm{Al} @ E u-B D C-$ $\mathrm{NH}_{2} /$ TDA. Inset: the pore size distributions.

Fig.S10. FT-IR spectra of Eu-BDC-NH2/TDA, Al@Eu-BDC-NH2/TDA and F@Eu-BDC$\mathrm{NH}_{2} /$ TDA.

Fig.S11. (A) Emission spectra of Eu-BDC-NH2/TDA in ethanol with different content of water. (B) Change of the $\mathrm{I}_{430} / \mathrm{I}_{621}$ upon the increase of water concentration.

Fig. S12. (A) XPS spectra for Eu-BDC-NH2/TDA and F@Eu-BDC-NH2/TDA. (B) XPS spectra for N 1 s in $\mathrm{Eu}-\mathrm{BDC}-\mathrm{NH}_{2} / \mathrm{TDA}$ and $\mathrm{F} @ E u-\mathrm{BDC}^{2} \mathrm{NH}_{2} / \mathrm{TDA}$. (C) XPS spectra for O 1 s in Eu-BDC$\mathrm{NH}_{2} / \mathrm{TDA}$ and $\mathrm{F} @ E u-\mathrm{BDC}^{2} \mathrm{NH}_{2} /$ TDA.

Fig. S13. The schematic diagram of the aperture measurement of Eu-BDC-NH2/TDA

Table S1 Crystal data and structure refinement for Eu-BDC-NH2/TDA

Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{EuN}_{1.5} \mathrm{O}_{7} \mathrm{~S}$
Formula weight	498.28
Temperature/K	296.15
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$8.967(6)$
b / \AA	$10.323(7)$

c / \AA	$10.471(7)$
$\alpha /{ }^{\circ}$	$115.226(8)$
$\beta /{ }^{\circ}$	$91.750(8)$
γ°	$109.208(8)$
Volume $/ \AA^{3}$	$811.4(10)$
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	2.040
μ / mm^{-1}	4.032
$\mathrm{~F}(000)$	485.0
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
Index ranges	4.388 to 55.254
range for data collection $/{ }^{\circ}$	$-11 \leq \mathrm{h} \leq 11,-8 \leq \mathrm{k} \leq 13,-13 \leq 1 \leq 13$
Reflections collected	4664
Independent reflections	$3628\left[\mathrm{R}_{\text {int }}=0.0242, \mathrm{R}_{\text {sigma }}=0.0572\right]$
Data/restraints/parameters	$3628 / 22 / 230$
Goodness-of-fit on F^{2}	1.054
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0450, \mathrm{wR}_{2}=0.1095$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0570, \mathrm{wR}_{2}=0.1162$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$2.16 /-1.03$

Table S2. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for compound Eu-BDC-NH ${ }_{2} /$ TDA

Atom	Atom	Length $/ \AA$
Eu1	Eu1\#1	$4.047(2)$
Eu1	O1\#2	$2.381(5)$
Eu1	$\mathrm{O} 2 \# 3$	$2.381(5)$
Eu1	$\mathrm{O} 3 \# 4$	$2.358(5)$
Eu1	O 4	$2.311(5)$
Eu1	$\mathrm{O} 4 \# 1$	$2.877(6)$
Eu1	$\mathrm{O} 5 \# 1$	$2.389(6)$
Eu1	O 6	$2.372(6)$
Eu1	O 7	$2.286(6)$
Eu1	$\mathrm{C} 2 \# 1$	$3.018(8)$
S1	C 3	$1.710(7)$
S1	C 4	$1.710(7)$
O1	C 1	$1.254(9)$
O2	C 1	$1.246(9)$
O3	C 6	$1.237(9)$
O4	C 2	$1.261(9)$
O5	C 2	$1.249(10)$
O6	C 12	$1.259(13)$

Atom	Atom	Length $/ \AA$
O 7	C 6	$1.278(10)$
C 1	C 4	$1.485(9)$
C 2	C 8	$1.461(10)$
C 3	C 6	$1.476(10)$
C 3	C 7	$1.361(11)$
C 4	C 5	$1.367(10)$
C 5	C 7	$1.390(10)$
N 1	C 9	$1.451(12)$
N 1	C 10	$1.493(14)$
N 1	C 12	$1.259(14)$
C 8	C 13	$1.3949(12)$
C 8	C 14	$1.3948(13)$
C 11	C 12	$1.567(18)$
C 13	$\mathrm{C} 14 \# 5$	$1.059(14)$
C 13	N 2	$1.37(3)$

\#1:1-X,-Y,1-Z; \#2:1-X,1-Y,1-Z; \#3: +X,-1+Y,+Z; \#4:-X,-Y,1-Z; \#5:1-X,-Y,2-Z

Table S3 Angles [${ }^{\circ}$] for compound Eu-BDC-NH ${ }_{2} /$ TDA

Atom	Atom	Atom	Angle ${ }^{\circ}$
O1\#1	Eu1	Eu1\#2	66.35(14)
O1\#1	Eu1	O4\#2	64.07(17)
O1\#1	Eu1	O5\#2	79.8(2)
O1\#1	Eu1	C2\#2	69.25(19)
O2\#3	Eu1	Eu1\#2	66.00(13)
O2\#3	Eu1	O1\#1	128.94(19)
O2\#3	Eu1	O4\#2	66.38(17)
O2\#3	Eu1	O5\#2	76.1(2)
O2\#3	Eu1	C2\#2	71.08(19)
O3\#4	Eu1	Eu1\#2	120.06(15)
O3\#4	Eu1	O1\#1	149.6(2)
O3\#4	Eu1	O2\#3	73.75(19)
O3\#4	Eu1	O4\#2	139.31(18)
O3\#4	Eu1	O5\#2	129.3(2)
O3\#4	Eu1	O6	76.3(2)
O3\#4	Eu1	C2\#2	140.8(2)
O4	Eu1	Eu1\#2	44.06(16)
O4\#2	Eu1	Eu1\#2	33.95 (11)
O4	Eu1	O1\#1	80.9(2)
O4	Eu1	O2\#3	77.68(19)
O4	Eu1	O3\#4	86.2(2)

Atom	Atom	Atom	Angle ${ }^{\circ}$
O4	Eu1	O4\#2	78.0(2)
O4	Eu1	O5\#2	125.4(2)
O4	Eu1	O6	83.7(2)
O4\#2	Eu1	C2\#2	24.54(18)
O4	Eu1	C2\#2	102.5(2)
O5\#2	Eu1	Eu1\#2	81.46(15)
O5\#2	Eu1	O4\#2	47.64(18)
O5\#2	Eu1	C2\#2	23.2(2)
O6	Eu1	Eu1\#2	117.36(16)
O6	Eu1	O1\#1	75.1(2)
O6	Eu1	O2\#3	145.5(2)
O6	Eu1	O4\#2	137.24(18)
O6	Eu1	O5\#2	137.6(2)
O6	Eu1	C2\#2	142.1(2)
O7	Eu1	Eu1\#2	149.66(17)
O7	Eu1	O1\#1	93.6(2)
O7	Eu1	O2\#3	120.0(2)
O7	Eu1	O3\#4	88.9(2)
O7	Eu1	O4\#2	117.5(2)
O7	Eu1	O4	159.4(2)
O7	Eu1	O5\#2	72.3(2)
O7	Eu1	O6	75.7(2)
O7	Eu1	C2\#2	93.9(2)
C2\#2	Eu1	Eu1\#2	58.48(15)
C4	S1	C3	92.7(4)
C1	O1	Eu1\#1	135.4(5)
C1	O2	Eu1\#5	132.0(4)
C6	O3	Eu1\#4	135.8(5)
Eu1	O4	Eu1\#2	102.0(2)
C2	O4	Eu1\#2	84.0(5)
C2	O4	Eu1	173.6(6)
C2	O5	Eu1\#2	108.0(5)
C12	O6	Eu1	147.8(7)
C6	O7	Eu1	147.7(6)
O1	C1	C4	115.6(7)
O2	C1	O1	127.4(7)
O2	C1	C4	116.9(6)
O4	C2	Eu1\#2	71.5(4)
O4	C2	C8	121.0(8)

Atom	Atom	Atom	Angle ${ }^{\circ}$
O5	$\mathrm{C} 2$	Eu1\#2	48.9(4)
O5	$\mathrm{C} 2$	O4	$120.0(7)$
O5	$\mathrm{C} 2$	C8	$119.0(7)$
C8	$\mathrm{C} 2$	Eu1\#2	$166.5(6)$
C6	C3	S1	$122.3(6)$
C7	C3	S1	$110.7(5)$
C7	C3	C6	$126.3(7)$
C1	$\mathrm{C} 4$	S1	$122.5(5)$
C5	$\mathrm{C} 4$	S1	$109.7(5)$
C5	$\mathrm{C} 4$	C1	$127.7(7)$
$\mathrm{C} 4$	C5	C7	$114.1(7)$
O3	C6	O7	$125.6(7)$
O3	C6	C3	$118.0(7)$
O7	C6	C3	116.4(7)
C3	C7	C5	$112.8(7)$
C9	N1	$\mathrm{C} 10$	$118.2(9)$
$\mathrm{C} 12$	N1	C9	$126.1(12)$
$\mathrm{C} 12$	N1	C10	$115.4(10)$
$\mathrm{C} 13$	C8	C2	129.3(9)
$\mathrm{C} 14$	C8	$\mathrm{C} 2$	$122.9(9)$
C14	C8	C13	107.8(9)
O6	$\mathrm{C} 12$	C11	$120.3(10)$
N1	C12	O6	$123.8(13)$
N1	C12	C11	$115.8(11)$
C14\#6	$\mathrm{C} 13$	C8	$128.0(14)$
C14\#6	C13	N2	$118.3(12)$
N2	C13	C8	$113.6(13)$
$\mathrm{C} 13 \# 6$	$\mathrm{C} 14$	C8	124.1(15)

