Ionic Fe(III)-porphyrin frameworks for one-pot synthesis of cyclic carbonates

from olefins and CO₂

Rajesh Das, Sahil Kamra, C. M. Nagaraja*

Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001

Punjab, India, Tel: 91-1881-242229, Email: <u>cmnraja@iitrpr.ac.in</u>

S.No.	Figure/	Title					
	Table No.						
01		Materials and methods					
02		Experimental section	S05				
03		Synthesis of 5, 10, 15, 20-tetrakis (4-pyridyl)-porphyrin [H ₂ TPyP]					
04		Synthesis of 5, 10, 15, 20-tetrakis (4'-pyridyl)Zn(II) porphyrin, [Zn-TPyP]	S06				
05		Synthesis of 5, 10, 15, 20-tetrakis (4'-pyridyl)Fe(III) porphyrin, [Fe-TPyP]	S06				
06		Synthesis of metal-porphyrin-based ionic porous polymer (M-IPOP1, M = Zn, Fe)					
07		Synthesis of metal-porphyrin-based ionic porous polymer (Fe-IPOP2)	S07				
08		Synthesis of Fe-POP	S07				
09	Scheme S1.	Synthesis scheme of Fe-POP					
10		Catalytic epoxidation of olefins					
11		Catalytic one-pot cyclic carboxylation of olefins with CO ₂	S09				
12		Analysis of gas adsorption isotherms					
13	Scheme S2.	Synthesis scheme of Zn/Fe-TPyP.					

Table of Contents

14	Fig. S1	¹ H NMR (400 MHz, CDCl ₃ , 20 °C) spectrum of H ₂ TPyP.	S12
15	Fig. S2	¹ H NMR (400 MHz, DMSO, 20 °C) spectrum of Zn-	S12
		ТРуР.	
16	Fig. S3	FT-IR spectra (solid, 1 mg sample, 20 °C) of (a) H ₂ TPyP,	S13
		(b) Zn-TPyP, and (c) Fe-TPyP.	
17	Fig. S4	UV-Visible absorption spectra (DMF (3 mL), 1 mg	S13
		sample, 25 °C) of (a) TPyP, (b) Zn-TPyP, and (c) Fe-	
		ТРуР.	
18	Fig. S5	PXRD plots of as-synthesized (a) Zn-IPOP1, (b) Fe-	S14
		IPOP1, (c) Fe-IPOP2, and (d) recycled Fe-POP1.	
19	Fig. S6	FT-IR spectra (solid, 1 mg sample, 25 °C) of (a) Fe-	S14
		TPyP, (b) Zn-IPOP1, and (c) Fe-IPOP1.	
20	Fig. S7	FT-IR spectra (solid, 1 mg sample, 25 °C) of (a) Fe-	S15
		TPyP, and (b) Fe-IPOP2.	
21	Fig. S8	FE-SEM images of (a) Fe-IPOP1, (b) Fe-IPOP2, and	S15
		recycled Fe-POP1.	
22	Fig. S9	EDX spectra of Fe-IPOP1.	S15
23	Fig. S10	XPS survey spectra for Fe-IPOP1.	S16
24	Fig. S11	XPS for Fe-POP2 (a) survey scan, (b) Fe 2p, (c) N 1s, and	S16
		(d) Br 3d.	
25	Fig. S12	N ₂ adsorption isotherm of (a) as-synthesized Fe-IPOP1,	S17
		and (b) recycled Fe-IPOP1.	
26	Fig. S13	N ₂ adsorption isotherm of Fe-IPOP2.	S17
27	Fig. S14	Pore size distribution plots for (a) Fe-IPOP1, and (b) Fe-	S18
		IPOP2.	
28	Fig. S15	Carbon dioxide adsorption isotherm of Fe-IPOP1 carried	S18
		out at 273 K.	
29	Fig. S16	Carbon dioxide adsorption isotherm of Fe-IPOP1 carried	S19
		out at 298 K.	
30	Fig. S17	Carbon dioxide adsorption isotherm of Fe-IPOP2 carried	S19

		out at 273 K.	
31 Fig. S18		Carbon dioxide adsorption isotherm of Fe-IPOP2 carried	
		out at 298 K.	
32	Fig. S19	Enthalpy of carbon dioxide adsorption for Fe-IPOP1	S20
		determined using the Clausius-Clapeyron equation.	
33	Fig. S20	Enthalpy of carbon dioxide adsorption for Fe-IPOP2	S21
		determined using the Clausius-Clapeyron equation.	
34	Fig. S21	Calculation of Henry gas selectivity constants for gases	S21
		(a) CO_2 , (b) N_2 , and (c) CH_4 .	
35	Table S1	Catalytic optimization for epoxidation of styrene.	S22
36	Fig. S22	Temperature-programmed desorption (TPD) profile for	S22
		Fe-IPOP1 (a) NH ₃ -TPD, and (b) CO ₂ -TPD.	
37	Fig. S23	¹ H NMR (400 MHz, CDCl ₃ , 20 °C) spectrum for the	S23
		epoxidation reaction of styrene catalyzed by Fe-IPOP1.	
38	Fig. S24 ¹³ C NMR (400 MHz, CDCl ₃ , 20 °C) spectrum for the		S23
		epoxidation reaction of styrene catalyzed by Fe-IPOP1.	
39	Fig. S25	¹ H NMR (400MHz, CDCl ₃ , 20 °C) spectrum for the	S23
		epoxidation reaction of styrene catalyzed by Zn-IPOP1.	
40 Table S2.		Catalytic optimization for the one-pot reaction of CO ₂	
		with styrene.	
41	Fig. S26	¹ H NMR (400 MHz, CDCl ₃ , 20 °C) spectrum for the one-	S25
		pot cyclic carboxylation of styrene with CO ₂ catalyzed by	
		Fe-IPOP1.	
42	Fig. S27	¹³ C NMR (400 MHz, CDCl ₃ , 20 °C) spectrum for the	S25
		one-pot cyclic carboxylation of styrene with CO_2	
		catalyzed by Fe-IPOP2 in 12h.	
43	Fig. S28	¹ H NMR (400 MHz, CDCl ₃ , 20 °C) spectrum for the one-	S26
		pot cyclic carboxylation of styrene with CO ₂ catalyzed by	
		Fe-IPOP2.	

44	Fig. S29	¹ H NMR (400 MHz, CDCl ₃ , 20 °C) spectrum for the one-	S26
		pot cyclic carboxylation of 4-fluorostyrene with CO ₂	
		catalyzed by Fe-IPOP1.	
45	Fig. S30	¹ H NMR (400 MHz, CDCl ₃ , 20 °C) spectrum for the one-	S27
		pot cyclic carboxylation of 4-chlorostyrene with CO ₂	
		catalyzed by Fe-IPOP1.	
46	Fig. S31	¹ H NMR (400 MHz, CDCl ₃ , 20 °C) spectrum for the one-	S27
		pot cyclic carboxylation of 4-nitrostyrene with CO ₂	
		catalyzed by Fe-IPOP1.	
47	Fig. S32	¹ H NMR (400 MHz, CDCl ₃ , 20 °C) spectrum for the one-	S28
		pot cyclic carboxylation of 1-hexene with CO ₂ catalyzed	
		by Fe-IPOP1.	
48	Fig. S33	FT-IR spectra (solid, 1 mg sample, 25 °C) of (a) styrene	S28
		oxide, (b) Fe-IPOP1, and (c) Fe-IPOP1 treated with	
		styrene oxide.	
49	Fig. S34	¹ H NMR (400 MHz, CDCl ₃ , 20 °C) spectrum for the one-	S29
		pot cyclic carboxylation of styrene with CO ₂ catalyzed by	
		Fe-IPOP1 after eight catalytic cycles.	
50	Fig. S35	FT-IR spectra (solid, 1 mg sample, 25 °C) of (i) as-	S29
	8	synthesized and (ii) recycled Fe-IPOP1 after eight	
		catalytic cycles.	
51	Fig. S36	XPS for recycled Fe-IPOP1 (a) survey scan, (b) Fe 2p, (c)	S30
51	1 lg. 550	N 1s, and (d) Br 3d.	550
52	Fig. \$27		620
52	Fig. S37	MP-AES calibration plot for the filtrate of catalytic	S30
		reaction with Fe-POP1.	
53		References	S31

Materials and methods

All reagents used in this study were commercially available and used as received without further purification. FeCl₃.6H₂O, Pyrrole, 4-pyridine carboxaldehyde, 1, 4-bis(bromomethyl) benzene, and ZnCl₂ were purchased from Sigma Aldrich Chemical Co. The powder XRD measurements were recorded on a PANalytical's X'PERT PRO diffractometer using CuK_{α} radiation ($\lambda = 1.542$ Å; 40 kV, 20 MA). Fourier transform infrared (FT-IR) spectra of the samples were recorded on a Perkin Elmer FTIR spectrometer. UV–Vis (Diffuse Reflectance) spectra were recorded on a Shimadzu spectrophotometer using BaSO₄ as a reference. The X-ray photoelectron spectroscopy (XPS) measurements were performed on a Thermo Fisher Scientific NEXSA photoemission spectrometer using Al K α (1486.6 eV) X-ray radiation. The analysis of obtained data was carried out using advantage software. ¹H NMR spectra were recorded in CDCl₃ on a JEOL JNM-ECS400 spectrometer operating at a frequency of 400 MHz.

Experimental Section

Synthesis of 5, 10, 15, 20-tetrakis (4-pyridyl)-porphyrin [H₂TPyP]

In a 250 mL round-bottom flask, 4-pyridine carboxaldehyde (25 mmol, 2.815 g) was dissolved in propionic acid (50 mL) with stirring. Pyrrole (25 mmol, 1.68 g) was then added dropwise. The solution was refluxed at 140 °C for 12 h. Then, the reaction mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure. After the removal of the solvent, the precipitation was done in DMF at a low temperature. The precipitate was filtered, washed with diethyl ether, and dried under vacuum to obtain a purple solid of H₂TPyP. ¹H NMR (400 MHz, CDCl₃) δ 8.94 (d, 8H, δ 8.83 (s, 8H,), δ 8.07 (d, 8H,), -2.83 (s, 2H)

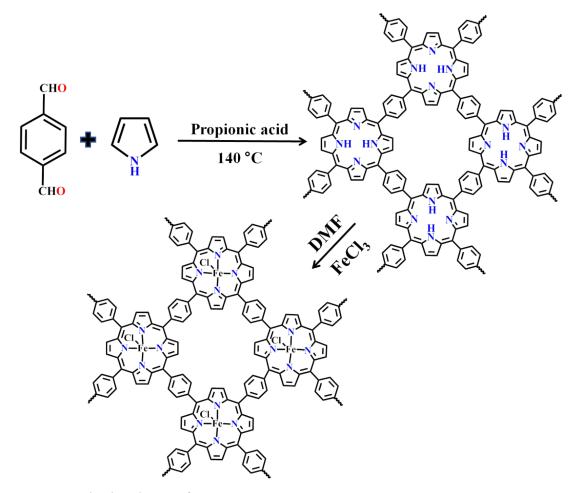
Synthesis of 5, 10, 15, 20-tetrakis (4'-pyridyl)Zn(II)porphyrin, [Zn-TPyP]

In a 250 mL round bottom flask, TPyP (0.5 mmol, 0.31 g) and ZnCl₂ (8 mmol, 1.00 mg) were dissolved in methanol (15 mL) and chloroform (60 mL). The resulting mixture was refluxed for 28 h. After cooling to room temperature, the solvent was removed under reduced pressure using a rotary evaporator. The obtained red solid was washed with methanol in sintered glass crucible and dried under vacuum. ¹H NMR (400 MHz, DMSO-d₆) δ 8.96 (d, 8H), δ 8.85 (s, 8H), δ 8.09 (d, 8H).

Synthesis of 5, 10, 15, 20-tetrakis (4'-pyridyl)Fe(III)porphyrin, [Fe-TPyP]

In a 250 mL round bottom flask, TPyP (0.5 mmol, 0.31 g) and FeCl₃.6H₂O (8 mmol, 1.60 g) were dissolved in methanol (15 mL) and chloroform (60 mL). The resulting mixture was refluxed for 28 h. After cooling to room temperature, the solvent was removed under reduced pressure using a rotary evaporator. The obtained red solid was washed with methanol in sintered glass crucible and dried under a vacuum.

Synthesis of metal-porphyrin-based ionic porous polymer (M-IPOP1, M = Zn, Fe)


To a suspension of M-TPyP (0.5 mmol) in 25 mL of THF, 1,4-bis(bromomethyl)benzene (BBMBr) (1 mmol, 0.264 g) was added and the resulting mixture was refluxed under N_2 atmosphere. After 90 h, the reaction mixture was cooled down to RT, and the solid of M-IPOP1 formed was washed thoroughly with chloroform. The product was further purified by washing with chloroform in a soxhlet apparatus for 36 h and dried at 80 °C under vacuum for 12 h.

Synthesis of metal-porphyrin-based ionic porous polymer (Fe-IPOP2)

To a suspension of Fe-TPyP (0.5 mmol) in 25 mL of THF, 4, 4'-bis(bromomethyl)biphenyl (1 mmol) was added, and the resulting mixture was refluxed under an N_2 atmosphere for 90 h and then it was cooled down to RT. The solid of Fe-IPOP2 formed was washed thoroughly with chloroform. The product was further purified by washing with chloroform in a soxhlet apparatus for 36 h and dried at 80 °C under vacuum for 12 h.

Synthesis of Fe-POP

The Fe-POP was synthesized by following the previously reported procedure with a slight modification (Scheme S2)¹. Briefly, terephthalaldehyde (10 mmol, 1.3 g) was mixed in 80 mL of propionic acid and separately pyrrole (20 mmol, 1342 mg) was dissolved in 20 mL of propionic acid and this solution was added to terephthalaldehyde solution in a drop-wise manner and the resulting mixture was refluxed for 12 h. After cooling to RT, the black ppt of POP polymer formed was obtained by filtration, washed thoroughly with CH2Cl2, CH3OH, and H2O, respectively, and dried under vacuum at 100 °C for 12 h. Then 50 mg of POP was dispersed by 15 mL DMF and FeCl₃.6H₂O (2 mmol) was added to this solution, and the resulting mixture was filtered and thoroughly washed with water and CH₃OH to remove unreacted metal salt and then dried at 100 °C under vacuum for 12 h.

Scheme S1. Synthesis scheme of Fe-POP.

Catalytic epoxidation of olefins

A mixture of catalyst (20 mg), olefins (1 mmol), and PhIO (1.5 mmol) was mixed in dichloromethane (2 mL) in a Schlenk tube (90 mL). The resulting mixture was stirred at RT for 18 h. After which time, the mixture was centrifuged to separate the catalyst, the solvent was evaporated, and the conversion was determined by ¹H NMR spectroscopy. The recovered catalyst after was washed with dichloromethane/methanol and dried under vacuum and reused for successive cycles.

The catalytic one-pot cyclic carboxylation of olefins with CO₂

The one-pot cyclic carboxylation of olefins with CO₂ was carried out in a 50 mL glass reactor. Prior to catalytic reactions, the catalyst was activated at 100 °C for 12 h under vacuum to remove guest solvent molecules. In a typical reaction, olefins (1 mmol), and the activated catalyst (20 mg) were taken in the reactor at RT. Then, CO₂ was flushed into the reactor three times to remove air and finally 1 bar was introduced and the reaction mixture was allowed to stir at 80 °C for 24 h. After this time, the mixture was cooled to RT and the catalyst was separated from the reaction mixture by simple centrifugation and the conversion was determined from ¹H NMR analysis of the filtrate. The recovered catalyst was washed with methanol thoroughly and activated at 100 °C under vacuum for 12 h and reused for subsequent catalytic cycles.

Analysis of gas adsorption isotherms

Clausius-Clapeyron equation² was used to calculate the enthalpies of carbon dioxide adsorption and by using Langmuir Freundlich equation³ an accurate fit was retrieved for precise prediction of carbon dioxide adsorbed at saturation. A modified Clausius-Clapeyron equation was used for calculations.

$$ln(P1/P2) = \Delta H_{ads}(T2 - T1/R.T1.T2).....(1)$$

where P_1 and P_2 = Pressures for isotherm at 273K and 298K, respectively.

 T_1 and T_2 = Temperatures for isotherm at 273K and 298K, respectively.

 ΔH_{ads} = Enthalpy of adsorption.

R = Universal gas constant = 8.314 J/K/mol.

The pressure is a function of the amount of gas adsorbed which was determined by using the Langmuir-Freundlich fit.

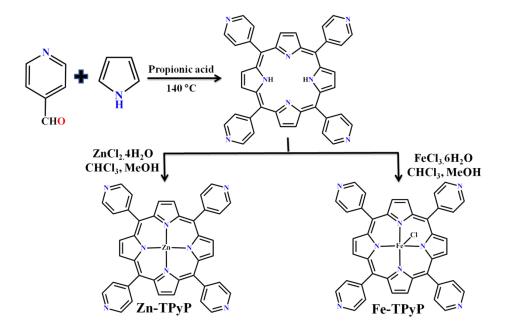
$$Q/Q_m = B.P^{(1/t)}/1 + (B.P^{(1/t)})$$
.....(2)

where Q = moles of gas adsorbed.

 Q_m = moles of gas adsorbed at saturation.

B and t = constants.

P = Pressure.


By rearranging equation (2) we get equation (3)

$$P = [(Q/Q_m)/\{B - (B.(Q/Q_m))\}]^t \dots (3)$$

Substituting equation (3) into equation (1) we get

$$\Delta H_{ads} = \{R.T1.T2/(T2 - T1)\} \cdot ln \frac{\left[(Q/Q_{m1})/\{B - (B.Q/Q_{m1})\}\right]^{t1}}{\left[(Q/Q_{m2})/\{B - (B.Q/Q_{m2})\}\right]^{t2}} \dots \dots \dots (4)$$

In equation (4), subscripts 1 and 2 represents data corresponding to 273K and 298K in the case of carbon dioxide gas.

Scheme S2. Synthesis scheme of Zn/Fe-TPyP.

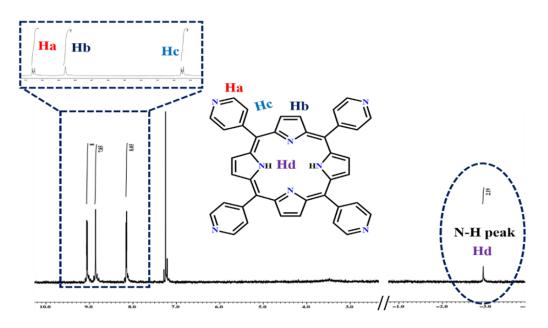


Fig. S1 ¹H NMR (400MHz, CDCl₃, 20 °C) spectrum of H_2TPyP .

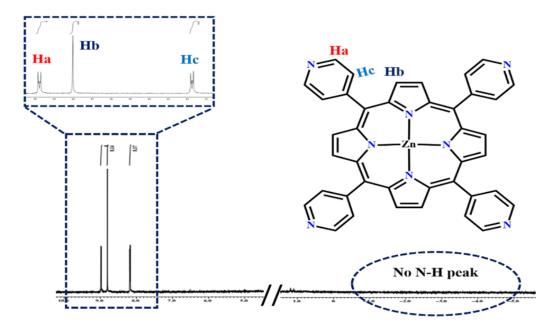
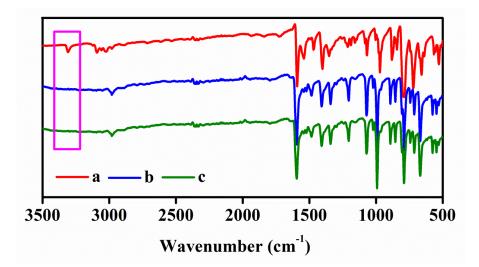
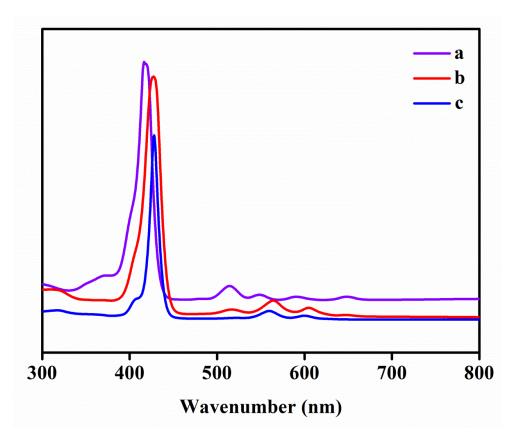




Fig. S2 ¹H NMR (400 MHz, DMSO, 20 °C) spectrum of Zn-TPyP.

Fig. S3 FT-IR spectra (solid, 1 mg sample, 20 °C) of (a) H₂TPyP, (b) Zn-TPyP, and (c) Fe-TPyP.

Fig. S4 UV-Visible absorption spectra (DMF (3 mL), 1 mg sample, 25 °C) of (a) TPyP, (b) Zn-TPyP, and (c) Fe-TPyP.

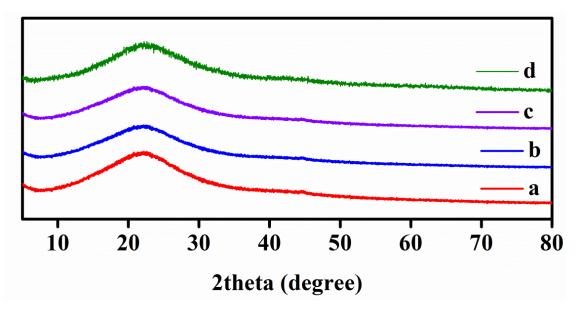


Fig. S5 PXRD plots of as-synthesized (a) Zn-IPOP1, (b) Fe-IPOP1, (c) Fe-IPOP2, and (d) recycled Fe-POP1.

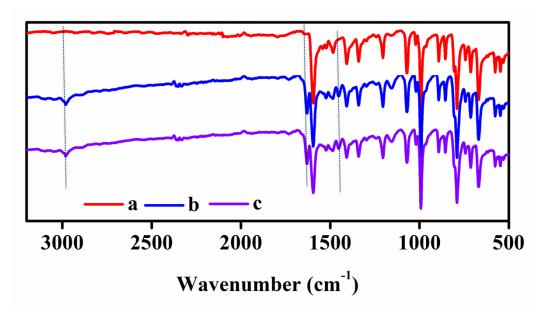


Fig. S6 FT-IR spectra (solid, 1 mg sample, 25 °C) of (a) Fe-TPyP, (b) Zn-IPOP1, and (c) Fe-IPOP1.

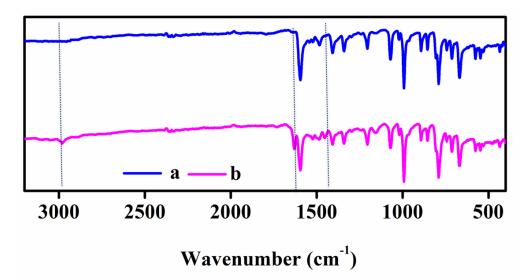


Fig. S7 FT-IR spectra (solid, 1 mg sample, 25 °C) of (a) Fe-TPyP, and (b) Fe-IPOP2.

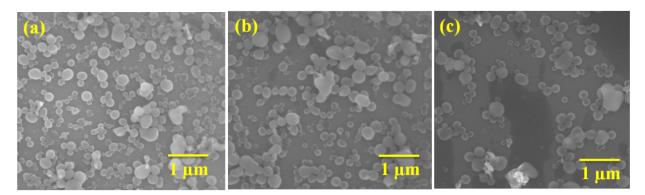


Fig. S8 FE-SEM images of (a) Fe-IPOP1, (b) Fe-IPOP2, and recycled Fe-POP1.

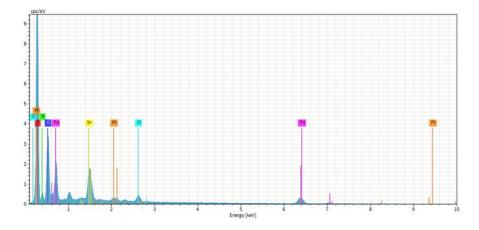


Fig. S9 EDX spectra of Fe-IPOP1.

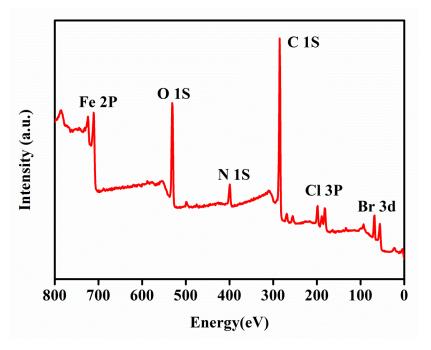


Fig. S10 XPS survey spectra for Fe-IPOP1.

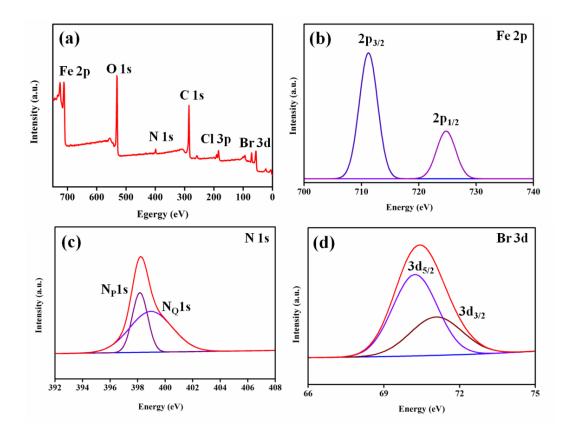


Fig. S11 XPS for Fe-POP2 (a) survey scan, (b) Fe 2p, (c) N 1s, and (d) Br 3d.

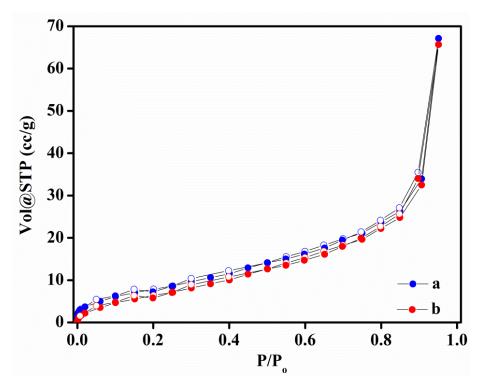


Fig. S12 N₂ adsorption isotherm of (a) as-synthesized Fe-IPOP1, and (b) recycled Fe-IPOP1.

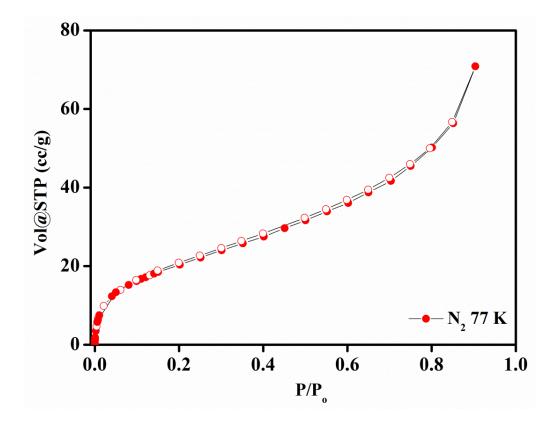
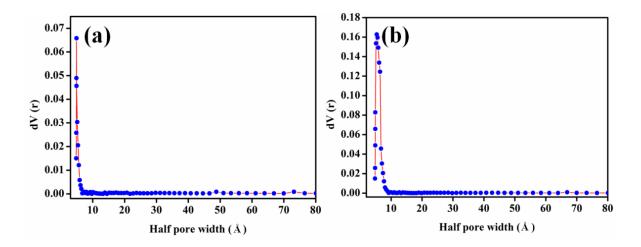
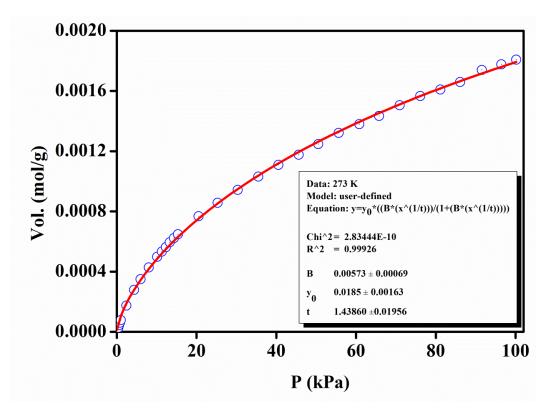
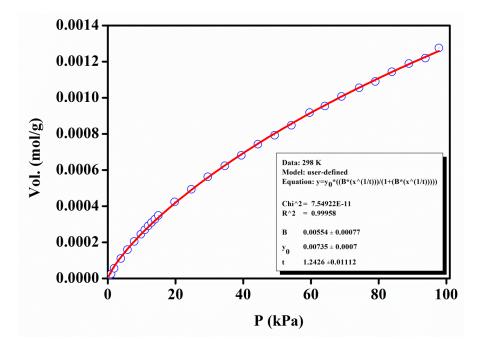
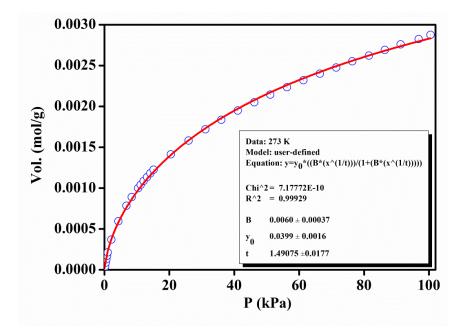
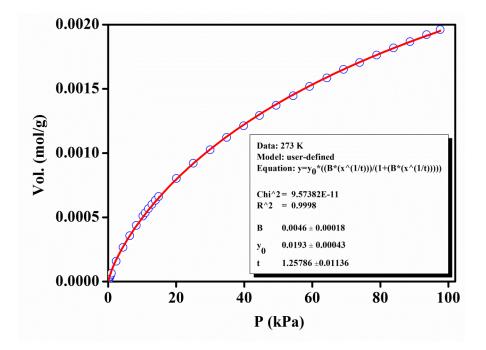
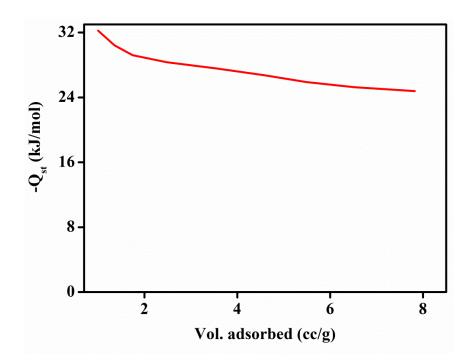


Fig. S13 N₂ adsorption isotherm of Fe-IPOP2.


Fig. S14 Pore size distribution plots for (a) Fe-IPOP1, and (b) Fe-IPOP2.


Fig. S15 Carbon dioxide adsorption isotherm of Fe-IPOP1 carried out at 273 K. The solid line shows the best fit to the data using the Langmuir-Freundlich equation.


Fig. S16 Carbon dioxide adsorption isotherm of Fe-IPOP1 carried out at 298 K. The solid line shows the best fit to the data using the Langmuir-Freundlich equation.

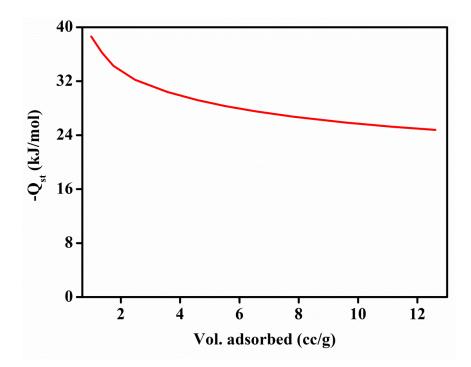

Fig. S17 Carbon dioxide adsorption isotherm of Fe-IPOP2 carried out at 273 K. The solid line shows the best fit to the data using the Langmuir-Freundlich equation.

Fig. S18 Carbon dioxide adsorption isotherm of Fe-IPOP2 carried out at 298 K. The solid line shows the best fit to the data using the Langmuir-Freundlich equation.

Fig. S19 Enthalpy of carbon dioxide adsorption for Fe-IPOP1 determined using the Clausius-Clapeyron equation.

Fig. S20 Enthalpy of carbon dioxide adsorption for Fe-IPOP2 determined using the Clausius-Clapeyron equation.

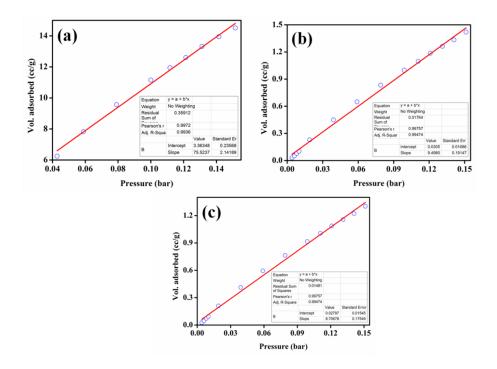
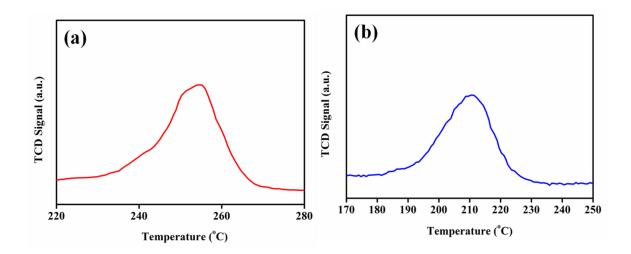
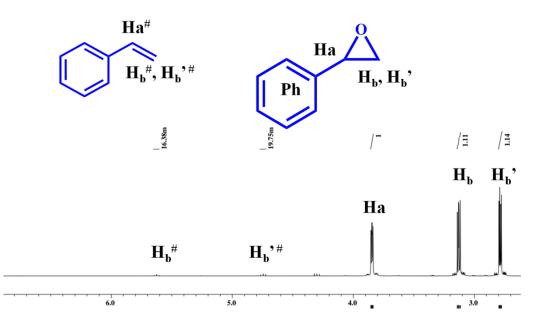
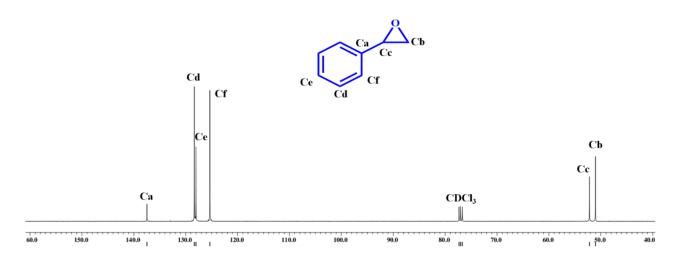



Fig. S21 Calculation of Henry gas selectivity constants for gases (a) CO_2 , (b) N_2 , and (c) CH_4 .


Fig. S22 Temperature-programmed desorption (TPD) profile for Fe-IPOP1 (a) NH₃-TPD, and (b) CO₂-TPD.

R Catalyst PhIO R						
SL. No.	Catalyst	Oxidizing agent	Time (h)	Conversion (%)		
01	-	-	18	-		
02	-	PhIO	18	02		
03	FeCl ₃	PhIO	18	12		
04	Fe-TPy	PhIO	18	16		
05	Fe-IPOP1	-	18	-		
06	Zn-IPOP1	PhIO	18	-		
07	Fe-IPOP1	PhIO	06	42		
08	Fe-IPOP1	PhIO	12	78		
09	Fe-IPOP1	PhIO	18	>99		


Table S1. Catalytic optimization for epoxidation of styrene.

^a Reaction conditions: Styrene (1 mmol), catalyst (20 mg), PhIO (1.5 mmol), DCM (2 mL),

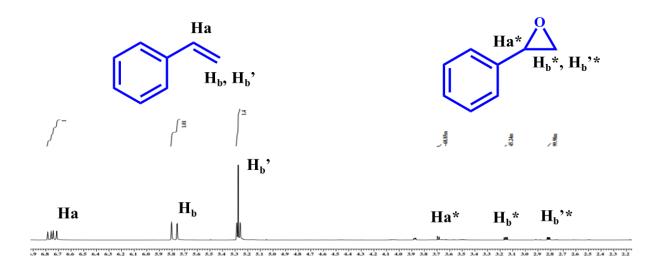

Temperature (30 °C). ^b The catalytic conversions were determined by ¹H NMR analysis.

Fig. S23 ¹H NMR (400MHz, CDCl₃, 20 °C) spectrum for the epoxidation reaction of styrene catalyzed by Fe-IPOP1.

Fig. S24 ¹³C NMR (400MHz, CDCl₃, 20 °C) spectrum for the epoxidation reaction of styrene catalyzed by Fe-IPOP1.

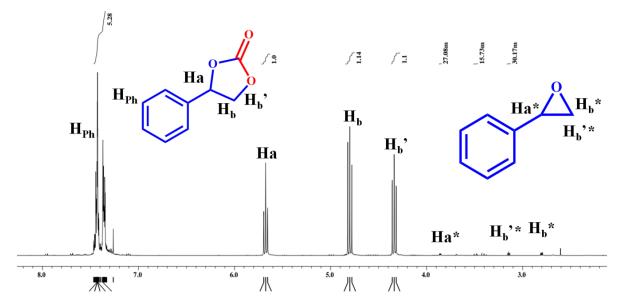


Fig. S25 ¹H NMR (400MHz, CDCl₃, 20 °C) spectrum for the epoxidation reaction of styrene catalyzed by Zn-IPOP1.

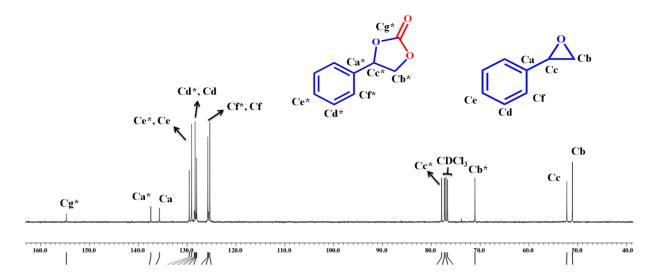

Catalyst PhIO, CO ₂ R					
SL.	Catalyst	Oxidizing	Time (h)	Temperature	Conversion
No.		agent		(°C)	(%)
01	-	-	24	80	-
02	Fe-TPyP	PhIO	24	80	03
03	Xylene dibromide	PhIO	24	80	-
04	Zn-IPOP1	PhIO	24	80	-
05	Fe-IPOP1	PhIO	08	80	49
06	Fe-IPOP1	PhIO	16	80	76
07	Fe-IPOP1	PhIO	24	30	32
08	Fe-IPOP1	PhIO	24	60	79
09	Fe-IPOP1	PhIO	24	80	>99

Table S2. Catalytic optimization for the one-pot reaction of CO_2 with styrene.

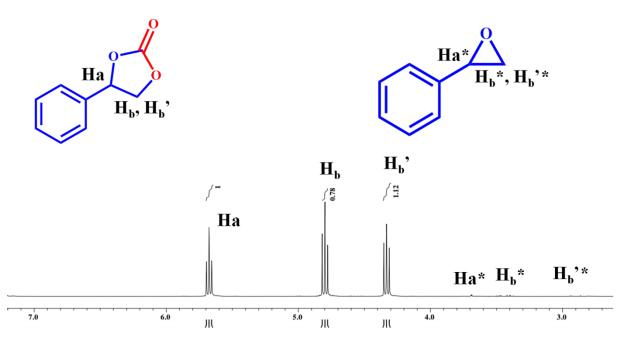

^a Reaction conditions: Styrene (1 mmol), catalyst (20 mg), PhIO (1.5 mmol), Pressure (1 bar), DCM (2 mL), Temperature (80 °C), time (24 h). ^b The catalytic conversions were determined by ¹H NMR analysis.

Fig. S26 ¹H NMR (400MHz, CDCl₃, 20 °C) spectrum for the one-pot cyclic carboxylation of styrene with CO₂ catalyzed by Fe-IPOP1.

Fig. S27 ¹³C NMR (400MHz, CDCl₃, 20 °C) spectrum for the one-pot cyclic carboxylation of styrene with CO₂ catalyzed by Fe-IPOP2 in 12h.

Fig. S28 ¹H NMR (400MHz, CDCl₃, 20 °C) spectrum for the one-pot cyclic carboxylation of styrene with CO_2 catalyzed by Fe-IPOP2.

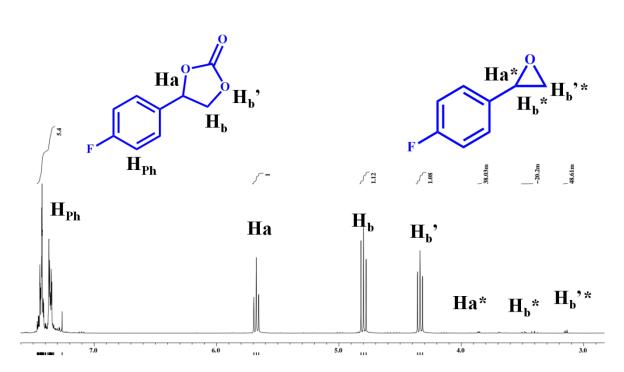


Fig. S29 ¹H NMR (400MHz, CDCl₃, 20 °C) spectrum for the one-pot cyclic carboxylation of 4fluorostyrene with CO_2 catalyzed by Fe-IPOP1.

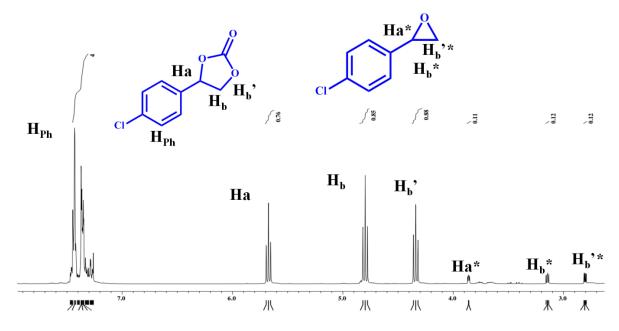
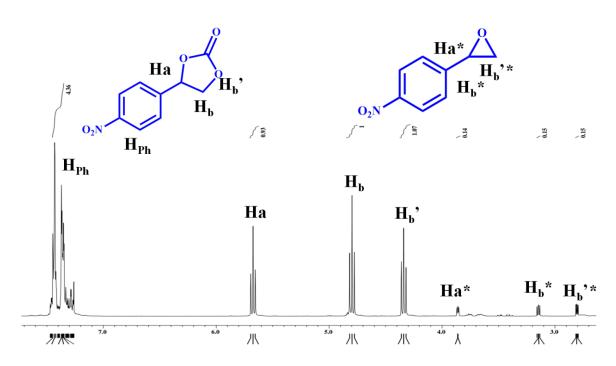
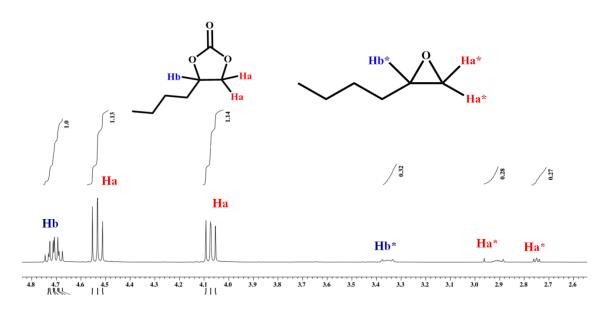
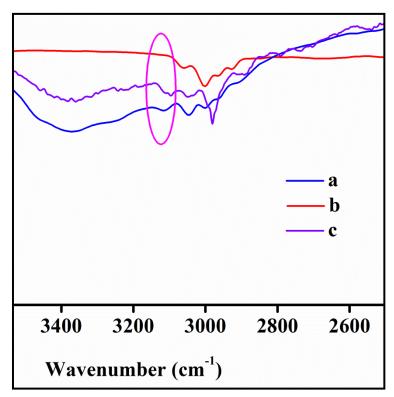
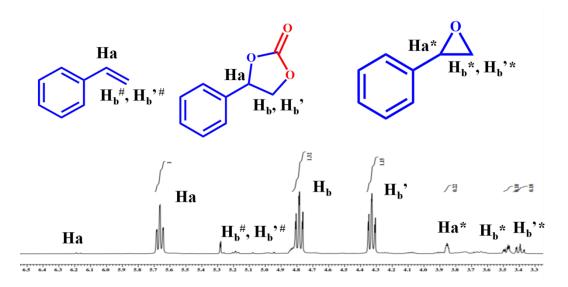



Fig. S30 ¹H NMR (400MHz, CDCl₃, 20 °C) spectrum for the one-pot cyclic carboxylation of 4chlorostyrene with CO₂ catalyzed by Fe-IPOP1.

Fig. S31 ¹H NMR (400MHz, CDCl₃, 20 °C) spectrum for the one-pot cyclic carboxylation of 4nitrostyrene with CO₂ catalyzed by Fe-IPOP1.

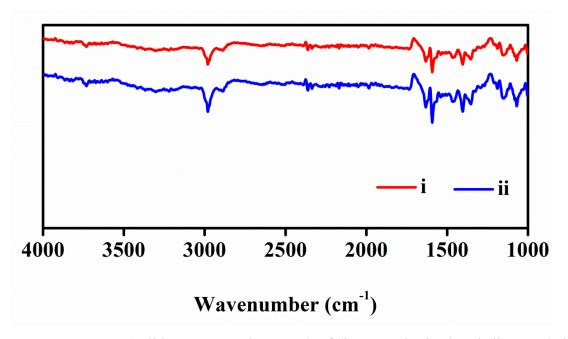

Fig. S32 ¹H NMR (400MHz, CDCl₃, 20 °C) spectrum for the one-pot cyclic carboxylation of 1hexene with CO₂ catalyzed by Fe-IPOP1.

Fig. S33 FT-IR spectra (solid, 1 mg sample, 25 °C) of (a) styrene oxide, (b) Fe-IPOP1, and (c) Fe-IPOP1 treated with styrene oxide.

Fig. S34 ¹H NMR (400MHz, CDCl₃, 20 °C) spectrum for the one-pot cyclic carboxylation of styrene with CO₂ catalyzed by Fe-IPOP1 after eight catalytic cycles.

Fig. S35 FT-IR spectra (solid, 1 mg sample, 25 °C) of (i) as-synthesized and (ii) recycled Fe-IPOP1 after eight catalytic cycles.

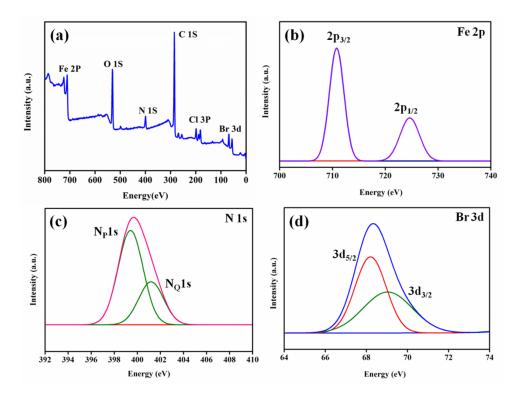


Fig. S36 XPS for recycled Fe-IPOP1 (a) survey scan, (b) Fe 2p, (c) N 1s, and (d) Br 3d.

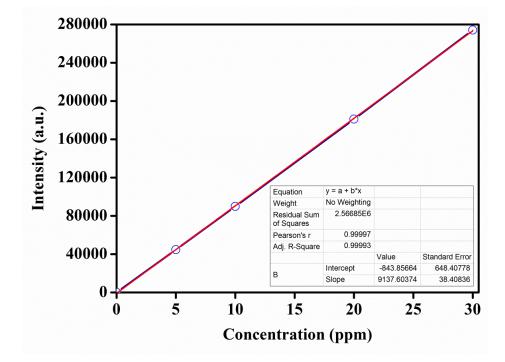


Fig. S37 MP-AES calibration plot for the filtrate of catalytic reaction with Fe-POP1.

References

(1) X. Yao, K. Chen, L. Qiu, Z. Yang and L. He, Ferric Porphyrin-Based Porous Organic Polymers for CO₂ Photocatalytic Reduction to Syngas with Selectivity Control, *Chem. Mater.*, 2021, **33**, 8863-8872.

(2) H. Pan, J. A. Ritter, P. B. Balbuena, Examination of the Approximations Used in Determining the Isosteric Heat of Adsorption from the Clausius–Clapeyron Equation. *Langmuir*, 1998, **14**, 6323-6327.

(3) R. T. Yang, Gas Separation by Adsorption Processes, Butterworth, Boston, 1997.