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Materials and methods

  All reagents used in this study were commercially available and used as received without 

further purification. FeCl3.6H2O, Pyrrole, 4-pyridine carboxaldehyde, 1, 4-bis(bromomethyl) 

benzene, and ZnCl2 were purchased from Sigma Aldrich Chemical Co. The powder XRD 

measurements were recorded on a PANalytical’s X’PERT PRO diffractometer using CuK 

radiation (λ = 1.542 Å; 40 kV, 20 MA). Fourier transform infrared (FT-IR) spectra of the 

samples were recorded on a Perkin Elmer FTIR spectrometer. UV−Vis (Diffuse Reflectance) 

spectra were recorded on a Shimadzu spectrophotometer using BaSO4 as a reference. The X-ray 

photoelectron spectroscopy (XPS) measurements were performed on a Thermo Fisher Scientific 

NEXSA photoemission spectrometer using Al Kα (1486.6 eV) X-ray radiation. The analysis of 

obtained data was carried out using advantage software. 1H NMR spectra were recorded in 

CDCl3 on a JEOL JNM-ECS400 spectrometer operating at a frequency of 400 MHz.

Experimental Section

Synthesis of 5, 10, 15, 20-tetrakis (4-pyridyl)-porphyrin [H2TPyP]                                          

In a 250 mL round-bottom flask, 4-pyridine carboxaldehyde (25 mmol, 2.815 g) was dissolved in 

propionic acid (50 mL) with stirring. Pyrrole (25 mmol, 1.68 g) was then added dropwise. The 

solution was refluxed at 140 °C for 12 h. Then, the reaction mixture was allowed to cool to room 

temperature and the solvent was removed under reduced pressure. After the removal of the 

solvent, the precipitation was done in DMF at a low temperature. The precipitate was filtered, 

washed with diethyl ether, and dried under vacuum to obtain a purple solid of H2TPyP. 1H NMR 

(400 MHz, CDCl3) δ 8.94 (d, 8H, δ 8.83 (s, 8H,), δ 8.07 (d, 8H,), -2.83 (s, 2H)
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Synthesis of 5, 10, 15, 20-tetrakis (4'-pyridyl)Zn(II)porphyrin, [Zn-TPyP]

In a 250 mL round bottom flask, TPyP (0.5 mmol, 0.31 g) and ZnCl2 (8 mmol, 1.00 mg) were 

dissolved in methanol (15 mL) and chloroform (60 mL). The resulting mixture was refluxed for 

28 h. After cooling to room temperature, the solvent was removed under reduced pressure using 

a rotary evaporator. The obtained red solid was washed with methanol in sintered glass crucible 

and dried under vacuum. 1H NMR (400 MHz, DMSO-d6) δ 8.96 (d, 8H), δ 8.85 (s, 8H), δ 8.09 

(d, 8H).

Synthesis of 5, 10, 15, 20-tetrakis (4'-pyridyl)Fe(III)porphyrin, [Fe-TPyP]

In a 250 mL round bottom flask, TPyP (0.5 mmol, 0.31 g) and FeCl3.6H2O (8 mmol, 1.60 g) 

were dissolved in methanol (15 mL) and chloroform (60 mL). The resulting mixture was 

refluxed for 28 h. After cooling to room temperature, the solvent was removed under reduced 

pressure using a rotary evaporator. The obtained red solid was washed with methanol in sintered 

glass crucible and dried under a vacuum. 

Synthesis of metal-porphyrin-based ionic porous polymer (M-IPOP1, M = Zn, Fe) 

    To a suspension of M-TPyP (0.5 mmol) in 25 mL of THF, 1,4-bis(bromomethyl)benzene 

(BBMBr) (1 mmol, 0.264 g) was added and the resulting mixture was refluxed under N2 

atmosphere. After 90 h, the reaction mixture was cooled down to RT, and the solid of M-IPOP1 

formed was washed thoroughly with chloroform. The product was further purified by washing 

with chloroform in a soxhlet apparatus for 36 h and dried at 80 °C under vacuum for 12 h.
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Synthesis of metal-porphyrin-based ionic porous polymer (Fe-IPOP2)

    To a suspension of Fe-TPyP (0.5 mmol) in 25 mL of THF, 4, 4'-bis(bromomethyl)biphenyl (1 

mmol) was added, and the resulting mixture was refluxed under an N2 atmosphere for 90 h and 

then it was cooled down to RT. The solid of Fe-IPOP2 formed was washed thoroughly with 

chloroform. The product was further purified by washing with chloroform in a soxhlet apparatus 

for 36 h and dried at 80 °C under vacuum for 12 h.

Synthesis of Fe-POP

    The Fe-POP was synthesized by following the previously reported procedure with a slight 

modification (Scheme S2)1. Briefly, terephthalaldehyde (10 mmol, 1.3 g) was mixed in 80 mL of 

propionic acid and separately pyrrole (20 mmol, 1342 mg) was dissolved in 20 mL of propionic 

acid and this solution was added to terephthalaldehyde solution in a drop-wise manner and the 

resulting mixture was refluxed for 12 h. After cooling to RT, the black ppt of POP polymer 

formed was obtained by filtration, washed thoroughly with CH2Cl2, CH3OH, and H2O, 

respectively, and dried under vacuum at 100 °C for 12 h. Then 50 mg of POP was dispersed by 

15 mL DMF and FeCl3.6H2O (2 mmol) was added to this solution, and the resulting mixture was 

heated to 150 °C with stirring for 6 h. After cooling to RT, the Fe-POP polymer formed was 

filtered and thoroughly washed with water and CH3OH to remove unreacted metal salt and then 

dried at 100 °C under vacuum for 12 h. 
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Scheme S1. Synthesis scheme of Fe-POP.

Catalytic epoxidation of olefins

    A mixture of catalyst (20 mg), olefins (1 mmol), and PhIO (1.5 mmol) was mixed in 

dichloromethane (2 mL) in a Schlenk tube (90 mL). The resulting mixture was stirred at RT for 

18 h. After which time, the mixture was centrifuged to separate the catalyst, the solvent was 

evaporated, and the conversion was determined by 1H NMR spectroscopy. The recovered 

catalyst after was washed with dichloromethane/methanol and dried under vacuum and reused 

for successive cycles.
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The catalytic one-pot cyclic carboxylation of olefins with CO2 

   The one-pot cyclic carboxylation of olefins with CO2 was carried out in a 50 mL glass reactor. 

Prior to catalytic reactions, the catalyst was activated at 100 °C for 12 h under vacuum to remove 

guest solvent molecules. In a typical reaction, olefins (1 mmol), and the activated catalyst (20 

mg) were taken in the reactor at RT. Then, CO2 was flushed into the reactor three times to 

remove air and finally 1 bar was introduced and the reaction mixture was allowed to stir at 80 °C 

for 24 h. After this time, the mixture was cooled to RT and the catalyst was separated from the 

reaction mixture by simple centrifugation and the conversion was determined from 1H NMR 

analysis of the filtrate. The recovered catalyst was washed with methanol thoroughly and 

activated at 100 °C under vacuum for 12 h and reused for subsequent catalytic cycles.

Analysis of gas adsorption isotherms

  Clausius-Clapeyron equation2 was used to calculate the enthalpies of carbon dioxide adsorption 

and by using Langmuir Freundlich equation3 an accurate fit was retrieved for precise prediction 

of carbon dioxide adsorbed at saturation. A modified Clausius-Clapeyron equation was used for 

calculations.

…….(1)𝑙𝑛(𝑃1/𝑃2)= Δ𝐻𝑎𝑑𝑠(𝑇2 ‒ 𝑇1/𝑅.𝑇1.𝑇2)

where P1 and P2 = Pressures for isotherm at 273K  and 298K, respectively.

              T1 and T2 = Temperatures for isotherm at 273K and 298K, respectively.

              ΔHads  = Enthalpy of adsorption.

              R = Universal gas constant = 8.314 J/K/mol.
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The pressure is a function of the amount of gas adsorbed which was determined by using the 

Langmuir-Freundlich fit.

……… (2)𝑄/𝑄𝑚= 𝐵.𝑃
(1/𝑡)/1 + (𝐵.𝑃(1/𝑡))

                         where Q = moles of gas adsorbed.

                                         Qm = moles of gas adsorbed at saturation.

                                         B and t = constants.

                                         P = Pressure.                

 By rearranging equation (2) we get equation (3)

……..(3)𝑃= [(𝑄/𝑄𝑚)/{𝐵 ‒ (𝐵.(𝑄/𝑄𝑚)}]𝑡

  Substituting equation (3) into equation (1) we get

………(4)
Δ𝐻𝑎𝑑𝑠= {𝑅.𝑇1.𝑇2/(𝑇2 ‒ 𝑇1)}.𝑙𝑛

⁡[(𝑄/𝑄𝑚1)/{𝐵 ‒ (𝐵.𝑄/𝑄𝑚1)}]
𝑡1

[(𝑄/𝑄𝑚2)/{𝐵 ‒ (𝐵.𝑄/𝑄𝑚2)}]
𝑡2

In equation (4), subscripts 1 and 2 represents data corresponding to 273K and 298K in the case 

of carbon dioxide gas. 
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Scheme S2. Synthesis scheme of Zn/Fe-TPyP.

Fig. S1 1H NMR (400MHz, CDCl3, 20 °C) spectrum of H2TPyP.

Fig. S2 1H NMR (400 MHz, DMSO, 20 °C) spectrum of Zn-TPyP.
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Fig. S3 FT-IR spectra (solid, 1 mg sample, 20 °C) of (a) H2TPyP, (b) Zn-TPyP, and (c) Fe-

TPyP.

Fig. S4 UV-Visible absorption spectra (DMF (3 mL), 1 mg sample, 25 °C) of (a) TPyP, (b) Zn-

TPyP, and (c) Fe-TPyP.
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Fig. S5 PXRD plots of as-synthesized (a) Zn-IPOP1, (b) Fe-IPOP1, (c) Fe-IPOP2, and (d) 

recycled Fe-POP1.

Fig. S6 FT-IR spectra (solid, 1 mg sample, 25 °C) of (a) Fe-TPyP, (b) Zn-IPOP1, and (c) Fe-

IPOP1.
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Fig. S7 FT-IR spectra (solid, 1 mg sample, 25 °C) of (a) Fe-TPyP, and (b) Fe-IPOP2.

Fig. S8 FE-SEM images of (a) Fe-IPOP1, (b) Fe-IPOP2, and recycled Fe-POP1.

Fig. S9 EDX spectra of Fe-IPOP1.
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Fig. S10 XPS survey spectra for Fe-IPOP1.

Fig. S11 XPS for Fe-POP2 (a) survey scan, (b) Fe 2p, (c) N 1s, and (d) Br 3d.
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      Fig. S12 N2 adsorption isotherm of (a) as-synthesized Fe-IPOP1, and (b) recycled Fe-IPOP1.

 

Fig. S13 N2 adsorption isotherm of Fe-IPOP2.
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Fig. S14 Pore size distribution plots for (a) Fe-IPOP1, and (b) Fe-IPOP2.

Fig. S15 Carbon dioxide adsorption isotherm of Fe-IPOP1 carried out at 273 K. The solid line 

shows the best fit to the data using the Langmuir-Freundlich equation.
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Fig. S16 Carbon dioxide adsorption isotherm of Fe-IPOP1 carried out at 298 K. The solid line 

shows the best fit to the data using the Langmuir-Freundlich equation.

Fig. S17 Carbon dioxide adsorption isotherm of Fe-IPOP2 carried out at 273 K. The solid line 

shows the best fit to the data using the Langmuir-Freundlich equation.
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Fig. S18 Carbon dioxide adsorption isotherm of Fe-IPOP2 carried out at 298 K. The solid line 

shows the best fit to the data using the Langmuir-Freundlich equation.

Fig. S19 Enthalpy of carbon dioxide adsorption for Fe-IPOP1 determined using the Clausius-

Clapeyron equation.
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Fig. S20 Enthalpy of carbon dioxide adsorption for Fe-IPOP2 determined using the Clausius-

Clapeyron equation.

Fig. S21 Calculation of Henry gas selectivity constants for gases (a) CO2, (b) N2, and (c) CH4.
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Fig. S22 Temperature-programmed desorption (TPD) profile for Fe-IPOP1 (a) NH3-TPD, and 

(b) CO2-TPD.

Table S1. Catalytic optimization for epoxidation of styrene. 

SL. No. Catalyst Oxidizing agent Time (h) Conversion (%)

01 - - 18 -

02 - PhIO 18 02

03 FeCl3 PhIO 18 12

04 Fe-TPy PhIO 18 16

05 Fe-IPOP1 - 18 -

06 Zn-IPOP1 PhIO 18 -

07 Fe-IPOP1 PhIO 06 42

08 Fe-IPOP1 PhIO 12 78

09 Fe-IPOP1 PhIO 18 >99
a Reaction conditions:  Styrene (1 mmol), catalyst (20 mg), PhIO (1.5 mmol), DCM (2 mL), 

Temperature (30 ºC). b The catalytic conversions were determined by 1H NMR analysis.
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Fig. S23 1H NMR (400MHz, CDCl3, 20 °C) spectrum for the epoxidation reaction of styrene 

catalyzed by Fe-IPOP1.

Fig. S24 13C NMR (400MHz, CDCl3, 20 °C) spectrum for the epoxidation reaction of styrene 

catalyzed by Fe-IPOP1.
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Fig. S25 1H NMR (400MHz, CDCl3, 20 °C) spectrum for the epoxidation reaction of styrene 

catalyzed by Zn-IPOP1.
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Table S2. Catalytic optimization for the one-pot reaction of CO2 with styrene. 

SL. 

No.

Catalyst Oxidizing 

agent

Time (h) Temperature 

(°C)

Conversion 

(%)

01 - - 24 80 -

02 Fe-TPyP PhIO 24 80 03

03 Xylene dibromide PhIO 24 80 -

04 Zn-IPOP1 PhIO 24 80 -

05 Fe-IPOP1 PhIO 08 80 49

06 Fe-IPOP1 PhIO 16 80 76

07 Fe-IPOP1 PhIO 24 30 32

08 Fe-IPOP1 PhIO 24 60 79

09 Fe-IPOP1 PhIO 24 80 >99

a Reaction conditions:  Styrene (1 mmol), catalyst (20 mg), PhIO (1.5 mmol), Pressure (1 bar), 

DCM (2 mL), Temperature (80 ºC), time (24 h). b The catalytic conversions were determined by 

1H NMR analysis.
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Fig. S26 1H NMR (400MHz, CDCl3, 20 °C) spectrum for the one-pot cyclic carboxylation of 

styrene with CO2 catalyzed by Fe-IPOP1.

Fig. S27 13C NMR (400MHz, CDCl3, 20 °C) spectrum for the one-pot cyclic carboxylation of 

styrene with CO2 catalyzed by Fe-IPOP2 in 12h.
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Fig. S28 1H NMR (400MHz, CDCl3, 20 °C) spectrum for the one-pot cyclic carboxylation of 

styrene with CO2 catalyzed by Fe-IPOP2.

Fig. S29 1H NMR (400MHz, CDCl3, 20 °C) spectrum for the one-pot cyclic carboxylation of 4-

fluorostyrene with CO2 catalyzed by Fe-IPOP1.
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Fig. S30 1H NMR (400MHz, CDCl3, 20 °C) spectrum for the one-pot cyclic carboxylation of 4-

chlorostyrene with CO2 catalyzed by Fe-IPOP1.

Fig. S31 1H NMR (400MHz, CDCl3, 20 °C) spectrum for the one-pot cyclic carboxylation of 4-

nitrostyrene with CO2 catalyzed by Fe-IPOP1.
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Fig. S32 1H NMR (400MHz, CDCl3, 20 °C) spectrum for the one-pot cyclic carboxylation of 1-

hexene with CO2 catalyzed by Fe-IPOP1.

Fig. S33 FT-IR spectra (solid, 1 mg sample, 25 °C) of (a) styrene oxide, (b) Fe-IPOP1, and (c) 

Fe-IPOP1 treated with styrene oxide.
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Fig. S34 1H NMR (400MHz, CDCl3, 20 °C) spectrum for the one-pot cyclic carboxylation of 

styrene with CO2 catalyzed by Fe-IPOP1 after eight catalytic cycles.

Fig. S35 FT-IR spectra (solid, 1 mg sample, 25 °C) of (i) as-synthesized and (ii) recycled Fe-

IPOP1 after eight catalytic cycles.



S30

Fig. S36 XPS for recycled Fe-IPOP1 (a) survey scan, (b) Fe 2p, (c) N 1s, and (d) Br 3d.

Fig. S37 MP-AES calibration plot for the filtrate of catalytic reaction with Fe-POP1. 
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