Supporting information

Surface reconstructing hierarchical structures as robust sulfion oxidation catalysts to produce hydrogen with ultralow energy consumption

Taotao Gao,^a Xiangmin Tang,^b Xiaoqin Li,^a Hai Lan,^c Shumin Yu,^b Shuaiwei Wu,^b Qu Yue^{*a} and Dan Xiao^{*a,d}

a Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China,

E-mail: xiaodan@scu.edu.cn, yuequ@cdu.edu.cn

b School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China.

c College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, P. R. China.

d College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China.

Fig. S1. The (a) Co 2p, (b) Ni 2p, (c) C1s and (d) O1s spectra of Ni-Co-C/NF.

Fig. S2. XRD patterns of the powder samples scraped from Ni-Co-C/NF and Ni-Co-S/NF, respectively.

Table S1. Ni, Co and S contents in Ni-Co-C/NF and Ni-Co-S/NF based on theICP-AES experiment.

Samples	Ni (wt.%)	Co (wt.%)	S (wt.%)
Ni-Co-C/NF	5.9	51.5	0.0
Ni-Co-S/NF	4.3	38.8	5.3

Fig. S3. The I-t curve during the activation process of Ni-Co-C/NF at the potential of 0.35 V vs. RHE.

Fig. S4. Images of NF (silver gray), Ni-Co-C/NF (pink) and Ni-Co-S/NF (black), respectively.

Fig. S5. SEM image of Ni-Co-S/NF and the element mapping of O, S, Co and Ni respectively.

Fig. S6. The XPS full spectrum of Ni-Co-S/NF.

Fig. S7. The O 1s, C 1s and Ni 2p spectra of Ni-Co-S/NF.

Fig. S8. The double-layer capacitance measurements of the electrodes; a-c) the cyclic voltammograms of the catalysts at a series of scan rates of 10, 20, 50, 100 and 150 mV s⁻¹ from 0.92 to 1.02 V vs. RHE in 1 M NaOH; d) the linear fitting of the oxidation currents of the catalysts at 0.97 V vs. RHE versus scan rates.

Electrical double-layer capacitance measurements were used to determine the electrochemical active surface area (ECSA) of the catalysts. According to Fig. S8d, the electrical double-layer capacitance could be obtained based on the specific capacitance value of a smooth standard with a real surface area of 1 cm⁻². 40 uF cm⁻² is considered as the value of specific capacitance for a smooth standard with a real surface area of 1 cm⁻² based on previous studies.

The electrochemical active surface area could be obtained via the following equation:

 $A_{ECSA} = \frac{\text{The electrical double-layer capacitor}}{40}$

For example:

Ni-Co-S/NF: $A_{ECSA} = \frac{1880}{40} = 47.00 \text{ cm}^2_{ECSA}$

Table S2. The calculated ECSA of the obtained electrodes.

Electrodes	C (mF cm ⁻²)	ESCA (cm ²)
NF	0.54	11.25
Ni-Co-C/NF	1.19	29.75
Ni-Co-S/NF	1.88	47.00

Fig. S9. (a) I-t curves of the Ni-Co-C/NF electrodes at different activation potentials and (b) polarization curves of the corresponding Ni-Co-C/NF electrodes.

Fig. S10 SEM images of the Ni-Co-S/NF electrodes activated at the potentials of (a) 0.30 V vs. RHE and (b) 0.45 V vs. RHE, respectively.

The different activation potentials would result in differences in morphology and structure, which is closely related to electrochemical performance.¹ Therefore, the SEM test of the Ni-Co-S/NF electrodes prepared at different activation potentials is performed. According to the SEM image of the Ni-Co-S/NF obtained at 0.35 V vs. RHE (Fig. 2c), the surface of needle-like nanorods becomes rough, and the tops of the needle-like nanorods interwoven together to form a stable structure, which is different from the initially smooth surface and relatively independent state (Fig. 2a). However, compared with the electrode activated at 0.35 V vs. RHE, the activation degree of the Ni-Co-S/NF obtained at a lower potential of 0.30 V vs. RHE is inadequate according to the almost smooth surface of the needle-like nanorods (Fig. S10a). Meanwhile, the higher activation potential (0.45 V vs. RHE) leads to the remarkable coalescence and fracture of nanorods (Fig. S10b). Therefore, the Ni-Co-S/NF electrode activated at 0.35 V vs. RHE obtains the optimal activation degree as well as high structure stability, and then displays efficient SOR catalytic activity and robust stability (Fig. 3 and S9).

Catalysts	Electrolytes	Potential (V) @100 mA cm ⁻²	References
Co-Ni ₃ S ₂	1 M NaOH+1M Na ₂ S	0.59	2
Cu ₂ S/NF	1 M NaOH+1M Na ₂ S	0.44	3
WS ₂ NSs	1 M NaOH+1M Na ₂ S	~0.75	4
CoS ₂ @C/MXene/NF	1 M NaOH+1M Na ₂ S	0.389	5
VSe ₂	1 M NaOH+1M Na ₂ S	0.45	6
Graphite electrode	1 M NaOH+ 1M NaHS+2 M NaClb	0.51	7
Pt disk	1M Na ₂ S	1.0 (vs SCE)	8
CoNi@NGs	1 M NaOH+1M Na ₂ S	0.52	9
Ni-Co-S/NF	1 M NaOH+1M Na ₂ S	0.366	This work
Ni-Co-C/NF	1 M NaOH+1M Na ₂ S	0.431	This work

 Table S3. Comparison of SOR catalytic activity.

Fig. 11. Electrochemical alternating current impedance of the samples at 0.32 V vs. RHE.

Fig. S12. Contact angle of the aqueous droplet on (a) NF, (b) Ni-Co-C/NF and (c) Ni-Co-S/NF, respectively.

Fig. S13. The SEM images of Ni-Co-S/NF-40.

Fig. S14. The XRD patterns of Ni-Co-S/NF and Ni-Co-S/NF-40.

Fig. S15. The stability test of Ni-Co-S/NF at the current density of 100 mA cm⁻².

Catalysts	Electrolyte	Potential (V) @100 mA cm ⁻²	References
Co-Ni ₃ S ₂	1 M NaOH+1M Na₂S ∥ 1 M NaOH+1M Na₂S	0.950	2
Cu ₂ S/NF	1 M NaOH+1M Na₂S ∥ 1 M NaOH	0.640	3
$WS_2 NSs$	1 M NaOH+2 M Na ₂ S 2.5 M H ₂ SO ₄	~1.24	4
CoS2@C/MXene/NF	1 M NaOH+1M Na ₂ S Sea water	~0.61	5
CoNiCuMnMo- NPs/CC	0.1M KOH+0.1 M MGLY 0.5 M H ₂ SO ₄	0.550/-/-	10
CC@N-CoP	0.96 M FeSO ₄ /0.74 M Fe ₃ (SO ₄) ₂ in 0.5 M H ₂ SO ₄ 0.5 M H ₂ SO ₄	1.18	11
Ni-Co-S/NF Pt- C/CP	1 M NaOH+1M Na₂S ∥ 0.5 M H₂SO₄	-0.274	This work
Ni-Co-S/NF Pt- C/CP	1 M NaOH+1M Na₂S ∥ 1 M NaOH	0.531	This work
Ni-Co-S/NF Pt- C/CP	$1 \text{ M NaOH} \parallel 0.5 \text{ M H}_2\text{SO}_4$	1.098	This work
Ni-Co-S/NF Pt- C/CP	1 M NaOH 1 M NaOH	1.822	This work

Table S4. Comparison of the electrochemical hydrogen productionperformance of the two-electrode electrolytic system.

Fig. S16. The polarization curve and corresponding power density of the two-electrode system in a dissymmetrical acid (Pt-C/CP for HER)-base (Ni-Co-S/NF for SOR) coupled electrolyzer (this electrolyzer is used as the galvanic cell at the low current density).

The calculation formula is as follows:

1 Kg H₂ is generated, and the required amount of charge (Q) is:

 $Q = (1000 \text{g} \times \text{N}_A \times 2\text{e})/M_{H_2} = (1000 \times 2 \times 6.022 \times 10^{23} \times 1.602 \times 10^{-19})/2.016 = 95706785.7 \text{ C}$

Where N_A is the Avogadro constant, e is the charge of an electron and M_{H_2} is the relative molecular mass of hydrogen (H₂).

For the HER (pH=14) + OER (pH=14) system, the applied voltages (U1) at a current density of 100 mA cm⁻² is 1.822 V. The amount of electricity (W1) required to obtain 1 Kg H₂ is:

W1 = QU1 = 95706785.7 ×1.822 = 174377763.545 $J \approx 48.438$ KW·h

For HER (pH=14) + SOR (pH=14) system, the applied voltages (U2) at the current density of 100 mA cm⁻² is 0.531 V.

The amount of electricity (W2) required to obtain 1 Kg H₂ is:

 $W2 = QU2 = 95706785.7 \times 0.531 = 50820303.207 J \approx 14.117 \text{ KW} \cdot \text{h}$

For HER (pH=0)+OER (pH=14) system, the applied voltages (U3) at the current density of 100 mA cm⁻² is 1.098 V.

The amount of electricity (W3) required to obtain 1 Kg H₂ is:

W3 = *QU*3 = 95706785.7 ×1.098 = 105086050.698 *J* ≈29.191 KW·h

For HER (pH=0)+SOR (pH=14) system, the applied voltages (U4) at the current density of 100 mA cm⁻² is -0.274 V.

The amount of electricity (W3) required to obtain 1 Kg H₂ is:

W4 = QU4 = 95706785.7 ×(-0.274) = -26223.659.282 J ≈-7.284 KW·h

Catalytic electrodes	Voltage (V) @100 mA cm ⁻²	The amount of electricity (KW·h) @ 100 mA cm ⁻²	
HER $(pH=14) +$	1 977	48.438	
OER (pH=14)	1.022		
HER $(pH=14) +$	0.531	14.117	
SOR (pH=14)	0.331		
HER $(pH=0) +$	1 098	20 101	
OER (pH=14)	1.070	29.191	
HER $(pH=0) +$	-0.274 (discharge)	-7.284 (discharge)	
SOR (pH=14)	-0.274 (discharge)	-7.20+ (discharge)	

Table S5. The energy consumption of different systems to obtain 1 Kg H_2 of different electrolytes in this work.

Fig. S17. (a) the schematic of the electrolyzer and (b) Stability test for the dissymmetrical acid (Pt-C/CP for HER)-base (Ni-Co-S/NF for SOR) coupled system.

Fig. S18. The Faraday efficiency test for H_2 in the dissymmetrical coupled system based SOR.

Calculation of Faradic efficiency for sulfur: The electrolyte after the electrolysis process is acidified by adding sulfuric acid (the pH value of the electrolyte was adjusted to about 1 to form colloidal sulfur based on equation (1)), centrifuged, washed, dried and then weighed to obtain the weight of the sulfur product. According to equations (1) and (2), S²⁻ is converted into polysulfide (S_x^{2-}) and finally sulfur is formed. No matter what the value of x, the number of transferred electrons (n) in the whole SOR process from S²⁻ to S is 2.

$$S_x^{2-}+H^+ \rightarrow (x-1)S+HS^-$$
 (1)
 $xS^{2-}-2e^- \rightarrow S_x^{2-}(x=1\sim 8)$ (2)

The Faradaic efficiency can be obtained based on the following equations (3) - (5).

F

$$Q = j \times t \qquad (3)$$

$$m_{\text{theory}} = \frac{Q \times M_S}{n \times F} \qquad (4)$$
aradaic efficiency(%) = $\frac{m_S}{m_{\text{theory}}} \times 100\%$ (5)

Where Q is the total quantity of electric charge consumed; M_S is the relative molecular weight of S (32); n is the number of transferred electrons in the whole SOR process from S²⁻ to S; F, j and t are the Faraday constant (96485 C mol⁻¹), the current density and reaction time, respectively; m_s and m_{theory} are the practice and theory weight of generated sulfur.

Time (h)	Practical sulfur powder	Theoretical sulfur	Faradaic efficiency of
	yield (g)	powder yield (g)	SOR (%)
0	0	0	0
20	0.568	0.597	95.1
40	1.163	1.195	97.3
60	1.751	1.792	97.7

Table S6. Yield of sulfur powder and the faradaic efficiency of SOR.

References

1. Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W.; Wu, D.; Zuo, S.; Zhang, J.; Chen, B.; Dai, Z.; Yang, Y.; Huang, Y.; Zhang, W.; Zhao, W.; Zhang, W.; Wang, L.; Chou, S., In-Situ Electrochemically Activated Surface Vanadium Valence in V2C MXene to Achieve High Capacity and Superior Rate Performance for Zn-Ion Batteries. *Advanced Functional Materials* **2021**, *31* (8), 2008033.

2. Li, Y.; Duan, Y.; Zhang, K.; Yu, W., Efficient anodic chemical conversion to boost hydrogen evolution with low energy consumption over cobalt-doped nickel sulfide electrocatalyst. *Chemical Engineering Journal* **2022**, *433*, 134472.

3. Pei, Y.; Cheng, J.; Zhong, H.; Pi, Z.; Zhao, Y.; Jin, F., Sulfide-oxidationassisted electrochemical water splitting for H2 production on a bifunctional Cu2S/nickel foam catalyst. *Green Chemistry* **2021**, *23* (18), 6975-6983.

4. Yi, L.; Ji, Y.; Shao, P.; Chen, J.; Li, J.; Li, H.; Chen, K.; Peng, X.; Wen, Z., Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkali-Acid Electrocatalytic Sulfion Recycling and H2 Generation. *Angewandte Chemie International Edition* **2021**, *60* (39), 21550-21557.

5. Zhang, L.; Wang, Z.; Qiu, J., Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation. *Advanced Materials* **2022**, *34* (16), 2109321.

6. Feng, W.; Cheng, M.; Du, R.; Wang, Y.; Wang, P.; Li, H.; Song, L.; Wen, X.; Yang, J.; Li, X.; He, J.; Shi, J., Gram-Scale Synthesized Two-Dimensional VSe2 and SnSe2 for Ultrahigh Electrocatalytic Sulfion Recycling. *Advanced Materials Interfaces* **2022**, *9* (13), 2200060.

7. Petrov, K.; Srinivasan, S., Low temperature removal of hydrogen sulfide from sour gas and its utilization for hydrogen and sulfur production. *International Journal of Hydrogen Energy* **1996**, *21* (3), 163-169.

8. Zhao, Y.; Wang, S.; Varela, H.; Gao, Q.; Hu, X.; Yang, J.; Epstein, I. R., Spatiotemporal Pattern Formation in the Oscillatory Electro-Oxidation of Sulfide on a Platinum Disk. *The Journal of Physical Chemistry C* **2011**, *115* (26), 12965-12971.

9. Zhang, M.; Guan, J.; Tu, Y.; Chen, S.; Wang, Y.; Wang, S.; Yu, L.; Ma, C.; Deng, D.; Bao, X., Highly efficient H2 production from H2S via a robust graphene-encapsulated metal catalyst. *Energy & Environmental Science* **2020**, *13* (1), 119-126.

10. Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z., High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production. *Journal of the American Chemical Society* **2022**, *144* (16), 7224-7235.

11. Zhou, Q.; Shen, Z.; Zhu, C.; Li, J.; Ding, Z.; Wang, P.; Pan, F.; Zhang, Z.; Ma, H.; Wang, S.; Zhang, H., Nitrogen-Doped CoP Electrocatalysts for Coupled Hydrogen Evolution and Sulfur Generation with Low Energy Consumption. *Advanced Materials* **2018**, *30* (27), 1800140.