Supplementary Information for

Topological control of metal–organic frameworks towards highly

sensitive and selective detection of chromate and dichromate

Zi-Jian Li,^a Yu Ju,^{a,c} Xiao-Ling Wu,^a Xiaoyun Li, ^a Jie Qiu,^b Yongxin Li^d, Zhi-Hui Zhang,^c Ming-Yang He,^c Linjuan Zhang,^a Jian-Qiang Wang,^a and Jian Lin^{*,b}

^aKey Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.

^bSchool of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China. E-mail: jianlin@xjtu.edu.cn

^cJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China

^dDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

*Co-corresponding authors

Fig. S1 Crystal images of (a) Th-BCTPE-1 and (b) Th-BCTPE-2.

Fig. S2 Powder X-ray diffraction patterns of as-synthesized and simulated (b) Th-BCTPE-1 and (b) Th-BCTPE-2.

S2

Fig. S3 Thermogravimetric analysis (TGA) curves of Th-BCTPE-1 and Th-BCTPE-2.

Fig. S4 Photoluminescence spectra of Th-BCTPE-1, Th-BCTPE-2, and H₂BCTPE under 365 UV excitation.

Fig. S5 Photoluminescence lifetimes of Th-BCTPE-1, Th-BCTPE-2, and H₂BCTPE.

Fig. S6 The quenching rates of Th-BCTPE-1 and Th-BCTPE-2 as a function of (a) CrO_4^{2-} and (b) $Cr_2O_7^{2-}$ concentration (0.1 – 0.9 μ M).

Fig. S7 (a) SEM–EDS mapping and spectrum of CrO_4^{2-} soaked Th-BCTPE-1. (b) SEM–EDS mapping and spectrum of $Cr_2O_7^{2-}$ soaked Th-BCTPE-1. (c) SEM–EDS mapping and spectrum of CrO_4^{2-} soaked Th-BCTPE-2. (d) SEM–EDS mapping and spectrum of $Cr_2O_7^{2-}$ soaked Th-BCTPE-2.

Fig. S8 The correlations of I_0/I as a function of (a) CrO_4^{2-} and (b) $Cr_2O_7^{2-}$ concentrations at high concentration region.

Fig. S9 The absorption spectra of $K_2CrO_4 / K_2Cr_2O_7$ solution and the excitation spectra of Th-BCTPE-1 and Th-BCTPE-2.

Fig. S10 Powder X-ray diffraction patterns of as-synthesized, CrO_4^{2-} soaked, and $Cr_2O_7^{2-}$ soaked (a) Th-BCTPE-1 and (b) Th-BCTPE-2.

1		
Code	Th-BCTPE-1	Th-BCTPE-2
CCDC No.	2213561 2213562	
formula	$C_{336}H_{216}O_{76}Th_{12} C_{141}H_{91}O_{36}Th_{6}$	
formula weight	8253.55 3753.37	
habit	octahedron needle	
space Group	Fm-3m	$P4_2/mmc$
<i>a</i> (Å)	31.000(5)	26.574(3)
<i>b</i> (Å)	31.000(5)	26.574(3)
<i>c</i> (Å)	31.000(5)	22.081(2)
α	90	90
β	90	90
γ	90	90
$V(Å^3)$	29790(13)	15593(3)
Ζ	2	2
T (K)	120	120
λ (Å)	0.71073	0.71073
Max. 2θ (°)	62.958	63.11
$ ho_{ m calcd}~(m g~ m cm^{-3})$	0.920	0.799
$\mu \ (\mathrm{mm}^{-1})$	3.024	2.884
GoF on F^2	1.081	1.025
$R_1, wR_2 [I > 2\sigma(I)]$	0.0944, 0.2532	0.0977, 0.2678
R_1 , wR_2 (all data)	0.1373, 0.2845	0,1477, 0.2971
$(\Delta \rho)_{\rm max}, (\Delta \rho)_{\rm min}/e ({\rm \AA}^{-3})$	1.59/-2.10	4.79, -5.02

 Table S1 Crystallographic data for Th-BCTPE-1 and Th-BCTPE-2.

Langmuir model		Freundlich model			
$Q_m(\text{mol/mol})$	K_L (mM ⁻¹)	R ²	k_F (mol/mol)	n	R ²
1.5830	276.07	0.9977	1.7055	17.43	0.8781
1.2199	43.90	0.9655	1.3564	5.53	0.6778
1.0493	60.05	0.9907	1.1671	7.05	0.8500
0.9267	81.77	0.9635	1.1495	5.18	0.8178
	Lan Q _m (mol/mol) 1.5830 1.2199 1.0493 0.9267	Langmuir model Q_m (mol/mol) K_L (mM ⁻¹) 1.5830 276.07 1.2199 43.90 1.0493 60.05 0.9267 81.77	Langmuir model Q_m (mol/mol) K_L (mM-1)R21.5830276.070.99771.219943.900.96551.049360.050.99070.926781.770.9635	Langmuir modelFreun Q_m (mol/mol) K_L (mM-1)R2 k_F (mol/mol)1.5830276.070.99771.70551.219943.900.96551.35641.049360.050.99071.16710.926781.770.96351.1495	Langmuir modelFreundlich model Q_m (mol/mol) K_L (mM-1)R2 k_F (mol/mol) n 1.5830276.070.99771.705517.431.219943.900.96551.35645.531.049360.050.99071.16717.050.926781.770.96351.14955.18

Table S2 Fitting results of the Cr(VI) sorption isotherms of Th-BCTPE-1 and Th-BCTPE-2 according to theLangmuir and Freundlich models.

MOFs	analyte	$K_{SV}(M^{-1})$	LOD (M)
$[7n (trab) (2.2 nda)] \cdot \parallel O^{1}$	CrO ₄ ²⁻	N/A	7.23×10 ⁻⁹
$[2 \Pi_2(\mu e b)_2(2, 3 - \Pi c b)_2]^{-}\Pi_2O^{-}$	$Cr_2O_7^{2-}$	N/A	8.58 ×10 ⁻⁹
Cd(TPA)(BIYB) ¹	$Cr_2O_7^{2-}$	1.4×107	2.4×10 ⁻⁷
$7n (H PCA) (a himb) (H O)^{1}$	CrO ₄ ²⁻		1.3×10 ⁻⁷
$\Sigma_{112}(112 \text{ DCA})_2(0-01110)_2(1120)_2$	$Cr_2O_7^{2-}$	6.6×10 ⁴	7.0×10^{-8}
$[7n(H, BCA)(m, bib)] \cdot H_{O}]$	CrO ₄ ²⁻		1.4×10 ⁻⁷
	$Cr_2O_7^{2-}$	5.3×10 ⁴	7.0×10^{-8}
[Zn ₂ (BDC) _{1.5} (L ₁₆)(DMF)]·1.5DMF ⁻¹	CrO ₄ ²⁻	6.1×10 ⁵	<u>3.0×10⁻⁸</u>
	$Cr_2O_7^{2-}$	1.0×10^{6}	2.0×10^{-8}
Hf-MOF-1 ²	$Cr_2O_7^{2-}$	7.1×10 ⁴	1.38×10 ⁻⁷
Hf-MOF-2 ²	$Cr_2O_7^{2-}$	4.6×104	1.38×10 ⁻⁷
Hf-MOF-3 ²	$Cr_2O_7^{2-}$	4.5×10 ⁵	1.3×10 ⁻⁸
[Zn_(treh)(hpdc),] ³	CrO ₄ ²⁻	1.085×10 ⁴	1.07×10 ⁻⁶
	$Cr_2O_7^{2-}$	1.122×10^{4}	1.04×10^{-6}
$[Zr_6O_4(OH)_8(H_2O)_4(sbtc)_2] (BUT-28)^4$	$Cr_2O_7^{2-}$	1.122×10 ⁵	1.7×10 ⁻⁶
Zr ₆ (OH) ₁₆ (TBAPy) ₂ (NU-1000) ⁵	$Cr_2O_7^{2-}$	1.34×10 ⁴	1.8×10 ⁻⁶
Zr ₆ O ₄ (OH) ₇₍ H ₂ O) ₃ (BTBA) ₃ (BUT-39) ⁶	$Cr_2O_7^{2-}$	1.57×10 ⁴	1.5×10 ⁻⁶
Th DCTDF 1	CrO ₄ ²⁻	2.4(1)×10 ⁵	9.0×10 ⁻⁹
	$Cr_2O_7^{2-}$	4.63(3)×10 ⁵	1.59×10^{-7}
Th RCTPF 2	CrO ₄ ²⁻	1.30(7) ×10 ⁵	4.6×10 ⁻⁹
1 II-DC 11 E-2	$\mathrm{Cr}_{2}\mathrm{O}_{7}^{2}$	2.222(9)×10 ⁵	9.4×10 ⁻⁸

Table S3 The $K_{\mbox{\scriptsize SV}}$ and LODs of selected MOF based sensors for chromate or dichromate.

Sample	k_{SV} (M ⁻¹)	σ	$LOD = 3\sigma/slope (nM)$
CrO ₄ ^{2–} @Th-BCTPE-1	2.4×10^{5}	0.00071	9.0
Cr ₂ O ₇ ²⁻ @ Th-BCTPE-1	4.6×10 ⁵	0.00071	4.6
CrO4 ²⁻ @Th-BCTPE-2	1.30×10 ⁵	0.0069	159
Cr ₂ O ₇ ²⁻ @Th-BCTPE-2	2.222×10 ⁵	0.0069	94

Table S4 Calculations of LOD of Th-BCTPE-1 and Th-BCTPE-2.

Supplementary References

- 1. B. Parmar, K. K. Bisht, Y. Rachuri and E. Suresh, Inorg. Chem. Front., 2020, 7, 1082.
- K. Wu, J. Zheng, Y.-L. Huang, D. Luo, Y. Y. Li, W. Lu and D. Li, *J. Mater. Chem. C*, 2020, 8, 16974.
- 3. B. B. Rath and J. J. Vittal, *Inorg. Chem.*, 2020, **59**, 8818.
- 4. M.-M. Xu, X.-J. Kong, T. He, X.-Q. Wu, L.-H. Xie and J.-R. Li, *Inorg. Chem.*, 2018, 57, 14260.
- 5. Z.-J. Lin, H.-Q. Zheng, H.-Y. Zheng, L.-P. Lin, Q. Xin and R. Cao, *Inorg. Chem.*, 2017, 56, 14178.
- 6. T. He, Y.-Z. Zhang, X.-J. Kong, J. Yu, X.-L. Lv, Y. Wu, Z.-J. Guo and J.-R. Li, *ACS Appl. Mater. Interfaces*, 2018, **10**, 16650.