Supporting Information

Gold-Nickel Phosphide Heterostructures for Efficient Photocatalytic

Hydrogen Peroxide Production from Real Seawater

Wei Wang,^{a,b} Qiang Luo,*^b Jinyang Li,^b Yunhong Li,^b Linqian Li,^b Xiaobing Huo,^b Xiwen Du,^a Ning Wang*^b

^aInstitute of New Energy Materials, School of Materials Science and Engineering,

Tianjin University, Tianjin, 300072, P. R. China

^bState Key Laboratory of Marine Resource Utilization in South China Sea, Hainan

University, Haikou, 570228, P. R. China

*Corresponding author

E-mail: luo-q11@foxmail.com

wangn02@foxmail.com

The calculation of HOMO and LUMO levels.

The HOMO and LUMO are calculated as follows:

$$E_{HOMO} = -\left(E_{onset}^{ox} - E_{ferrocene} + 4.8\right) eV$$
$$E_{LUMO} = -\left(E_{onset}^{red} - E_{ferrocene} + 4.8\right) eV$$

Where E_{onset}^{red} , E_{onset}^{ox} and $E_{ferrocene}$ are the reduction potential, onset of oxidation and

the oxidation potential of ferrocene, respectively ^{1,2}.

Fig. S1 SEM images of Ni(OH)₂ precursor.

Fig. S2 XPS spectra of Au@Ni₅P₄. (a) survey, (b) Ni 2p and (c) P 2p, respectively.

Fig. S3 (a) Nitrogen adsorption-desorption isotherms of Ni₅P₄, and (b) The corresponding pore size distribution.

Fig. S4 Time course of H₂O₂ photoproduction and the corresponding fitting curves of

Au@Ni₅P₄ and Ni₅P₄ in real seawater or water, respectively.

Fig. S5 The photocataltic production of H_2O_2 as a function of mass concentration of

Au@Ni₅P₄.

Fig. S6 Photocatalytic H_2O_2 production on Au@Ni₅P₄ under different light intensity

for 6 h.

Fig. S7 Stability characterizations of Au@Ni $_5P_4$ after fifteen cycles of photocatalytic reaction. (a) SEM image. (b) XRD pattern, and (c) High-resolution XPS spectra of Au 4f.

Fig. S8 LSV curves of Ni₅P₄ measured on RDE at different rotating speeds. Inset: the corresponding Koutecky-Levich plot.

Fig. S9 Concentrations of H_2O_2 formed and the Faradaic efficiency of Au@Ni₅P₄ and Ni₅P₄ cathodes at 50 mA cm⁻².

Fig. S10 Amounts of O_2 formed during the half photoreaction.

Sample	Shell	CNa	$R(\text{\AA})^b$	$\sigma^2(\mathrm{\AA}^2)^c$	$\Delta E_0(\mathrm{eV})^d$	R factor
Au foil	Au-Au	12*	2.86 ± 0.03	0.0075 ± 0.0004	4.6±0.4	0.0065
AuCl ₃	Au-Cl	4.1±0.7	2.31±0.02	$0.0038 {\pm} 0.0031$	-6.2±1.6	0.0078
Au@Ni ₅ P ₄	Au-P	1.1±0.5	2.34±0.01	0.0090 ± 0.0046	9.5±2.4	0.0170
	Au-Au	7.8±1.9	2.85±0.04	$0.0077 {\pm} 0.0018$	4.1±1.2	0.0179

Table S1 EXAFS fitting parameters at the Au L_3 -edge for various samples

^{*a*}*CN*, coordination number; ^{*b*}*R*, distance between absorber and backscatter atoms; ^{*c*} σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ^{*d*} ΔE_0 , inner potential correction; *R* factor indicates the goodness of the fit. S_0^2 was fixed to 0.78, according to the experimental EXAFS fit of Au foil by fixing CN as the known crystallographic value. A reasonable range of EXAFS fitting parameters: $0.700 < S_0^2$ < 1.000; *CN* > 0; σ^2 > 0 Å²; $|\Delta E_0| < 10$ eV; *R* factor < 0.02.

Samples	$\tau_1/ns(A_1)$	$\tau_2/ns(A_2)$	$ au_A/ns$
Au@Ni5P4	0.88 (64.8%)	6.54 (35.2%)	5.42
Ni ₅ P ₄	0.76 (67.3%)	4.53 (32.7%)	3.56

 $\textbf{Table S2} \text{ TRPL data of } Au@Ni_5P_4 \text{ and } Ni_5P_4.$

References

- Y. Liu, Y. Zhao, Y. Sun, J. Cao, H. Wang, X. Wang, H. Huang, M. Shao, Y. Liu and Z. Kang, A 4e⁻-2e⁻ cascaded pathway for highly efficient production of H₂ and H₂O₂ from water photo-splitting at normal pressure, *Appl. Catal. B: Environ.*, 2020, 270, 118875.
- 2 Y. Liu, Y. Zhao, Q. Wu, X. Wang, H. Nie, Y. Zhou, H. Huang, M. Shao, Y. Liu and Z. Kang, Charge storage of carbon dot enhances photo-production of H₂ and H₂O₂ over Ni₂P/carbon dot catalyst under normal pressure, *Chem. Eng. J.*, 2021, **409**, 128184.