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Electrochemical method

CV: The Zn2+ diffusion coefficient was calculated by the CV curves at different 

scanning rate, which was based on the following equation:

                   (S1)𝐼𝑃= 2.695 × 10
5𝐴𝐶𝐷1/2𝑛2/3𝑣1/2

Where Ip is the peak current of cathodic and anodic peaks, A is the area of electroactive 

material contact with electrolyte, C is the concentration of Zn2+ in electrode, D is the 

diffusion coefficient of Zn2+, n represents the number of electrons transferred per 

molecule, v is the scan rate 

GITT: The Galvanostatic and intermittent titration technique (GITT) was measured to 

investigate the solid-state diffusion kinetics of Zn2+ in the charging and discharge 

process. After discharged and charged for several cycles to stable state, the battery was 

discharged or charged about 10 min at 0.1 A g-1, and followed relaxed for 60 min during 

the entire process. The Zn2+ diffusion coefficient was calculated by the above GITT 

date, which was based on the following equation:
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Where D is the diffusion coefficient of Zn2+,  is to the current pulse time of battery, 

mB is the mass of the active material, MB is the molecular weight (g mol-1) and VM is 

the molar volume (cm3 mol-1), S represents the surface area of electrode. The ΔE and 

ΔEs correspond to the voltage change of constant current pulse and the steady-state 

voltage change of the current pulse, respectively.
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Fig. S1 (a) XRD patterns of NVO/PANI60, NVO/PANI80, NVO/PANI100, NVO/PANI120 and 

NVO/PANI140. (b) XRD pattern of pure PANI.

Fig. S2 (a) XPS spectra and (b) High-resolution spectra of V 2p of NH4V4O10.

Fig. S3 (a) XPS spectra and (b) High-resolution spectra of V 2p of NVO without adding aniline.
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Fig. S4 The TG curve of NVO/PANI120.

Fig. S5 (a) CV curves at various scan rates. (b) rate performance at different current densities and 

(c) cycling performance at 5 A g-1 of the PANI.
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Fig. S6 (a) Rate performance and (b) cycling performance at 5 A g-1 of NVO/PANI60, 

NVO/PANI80, NVO/PANI100, NVO/PANI120 and NVO/PANI140.

Fig. S7 The SEM image of NVO/PANI120 electrode at 0.1 A g-1 after 100 cycles.
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Fig. S8 (a) CV curves from 0.1 mV s-1 to 1.0 mV s-1, (b) the relationship between peak currents 

and scan rate, (c) the percent of calculated capacitive contribution and (e) the linear relation of Ip 

and v1/2 of NH4V4O10 electrode.

Fig. S9 Nyquist plots of NH4V4O10, NVO/PANI60, NVO/PANI80, NVO/PANI100, 

NVO/PANI120 and NVO/PANI140.
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Fig. S10 GITT curves of the NH4V4O10 electrode at 0.1A g-1.

Fig. S11 (a) Schematic illustration of partial enlarged GITT curve and (b) the linear relationship 

between E and τ1/2 at the discharge process for NVO/PANI120.
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Fig. S12 The ex-situ XRD patterns of NVO/PANI120 during the first cycle.

Fig. S13 XRD pattern of NVO/PANI at 1.6 V after different cycle number
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Fig. S14 (a) XRD pattern of NVO/PANI with discharging to 0.2 V, (b) the corresponding EDS 

mapping.
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Table S1. Electrochemical performances of V-based electrode materials of the aqueous 

zinc ion batteries.

Cathode Electrolyte Specific 
capacity

Rate 
performa

nce

Cycling 
stability Ref.

(NH4)0.5V2O
5

2M ZnSO4
418.4 mAh g-

1 at 0.1 A g-1

223 mAh 
g-1 at 5 A 

g-1

91.4% 
retention after 
2000 cycles at 

5 A g-1

1

NH4V4O10
3M 

Zn(CF3SO3)2

475.8 mAh g-

1 at 0.4 A g-1

142.5 
mAh g-1 at 

5 A g-1

90.0% 
retention after 
2100 cycles at 

5 A g-1

2

Oxygen-
deficient 

NH4V4O10

3M 
Zn(CF3SO3)2

484.3 mAh g-

1 at 0.1 A g-1

328.1 
mAh g-1 at 

3 A g-1

66.2% 
retention after 
1000 cycles at 

2 A g-1

3

Optimizing 
engineering 
NH4V4O10

2M ZnSO4
430 mAh g-1 
at 0.1 A g-1

277.1 
mAh g-1 at 
10 A g-1

72.2% 
retention after 
3000 cycles at 

10 A g-1

4

NH4V4O10
3M 

Zn(CF3SO3)2

147 mAh g-1 
at 0.05 A g-1

72 mAh g-

1 at 2 A g-1

70.3% 
retention after 
5000 cycles at 

2 A g-1

5

Mo-doped 
NH4V4O10

1M 
Zn(CF3SO3)2

335 mAh g-1 
at 0.1 A g-1

145.4 
mAh g-1 at 

2 A g-1

83.6% 
retention after 
500 cycles at 

0.5 A g-1

6

Ti-doped 
NH4V4O10

3M 
Zn(CF3SO3)2

298 mAh g-1 
at 0.1 A g-1

143 mAh 
g-1 at 2 A 

g-1

89.0% 
retention after 
2000 cycles at 

2 A g-1

7

NH4V4O10∙0
.28H2O

2M 
Zn(CF3SO3)2

410 mAh g-1 
at 0.2 A g-1

112 mAh 
g-1 at 10 A 

g-1

76% 
retention after 
500 cycles at 2 

A g-1

8

Deficient 
NH4V4O10

3M 
Zn(CF3SO3)2

457 mAh g-1 
at 0.1 A g-1

170 mAh 
g-1 at 5 A 

g-1

81.0% 
retention after 
1000 cycles at 

2 A g-1

9
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Table S2. The charge transfer resistivities (Rct) of NVO/PANI120 and reported 

cathode.

Carbon 
fiber/ 

NH4V4O10

2M ZnSO4
434 mAh g-1 
at 0.5 A g-1

140 mAh 
g-1 at 20 A 

g-1

83.0% 
retention after 
2500 cycles at 

20 A g-1

10

3D-
NH4V4O10

1M 
Zn(ClO4)2

485 mAh g-1 
at 0.1 A g-1

142 mAh 
g-1 at 10 A 

g-1

80.6% 
retention after 
3000 cycles at 

10 A g-1

11

NVO/PANI 3M 
Zn(CF3SO3)2

433.8 mAh g-

1 at 0.1 A g-1

308.06 
mAh g-1 at 
10 A g-1

92.23% 
retention after 
5000 cycles at 

5 A g-1

This
work

Samples Rct (initial cycle) Rct (after the cycle) Reference

3D-NH4V4O10 35.17Ω 27Ω 2

NH4V4O10-Na 143Ω 105Ω 12

NH4V4O10-Ti 121.5Ω 62Ω 7

V2O5-PANI 24.1Ω 15.4 13

V2O5-Al 230.3Ω 53.04Ω 14

NVO/PANNI120 111.5 Ω 17.6 Ω This work
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