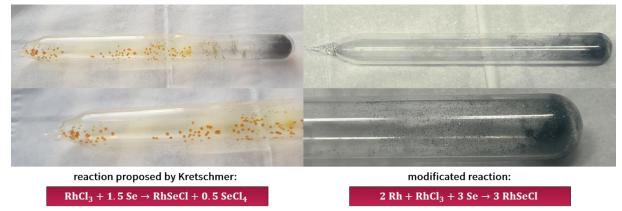
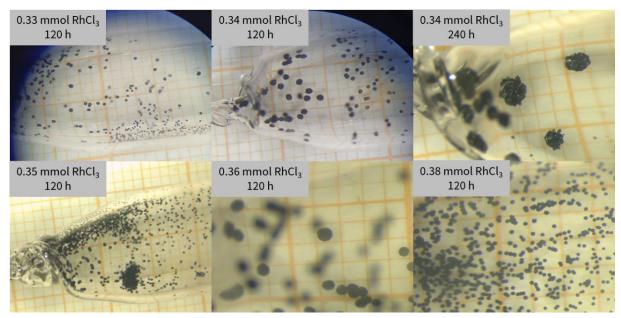
Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information


Crystal growth of a 2D Janus rhodiumchalcohalide RhSeCl

Domenic Nowak, *a Martin Valldor, b Bastian Rubrecht, a,c Samuel Froeschke, Samar Eltoukhy, Bernd Büchner, Silke Hampel, *a and Nico Gräßler*a


- ^a Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany. E-mail: d.nowak@ifw-dresden.de, s.hampel@ifw-dresden.de and n.graessler@ifw-dresden.de

 ^b Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.
- ^c Institute for Solid State Physics, Technical University Dresden, D-01062 Dresden, Germany.

Synthesis process

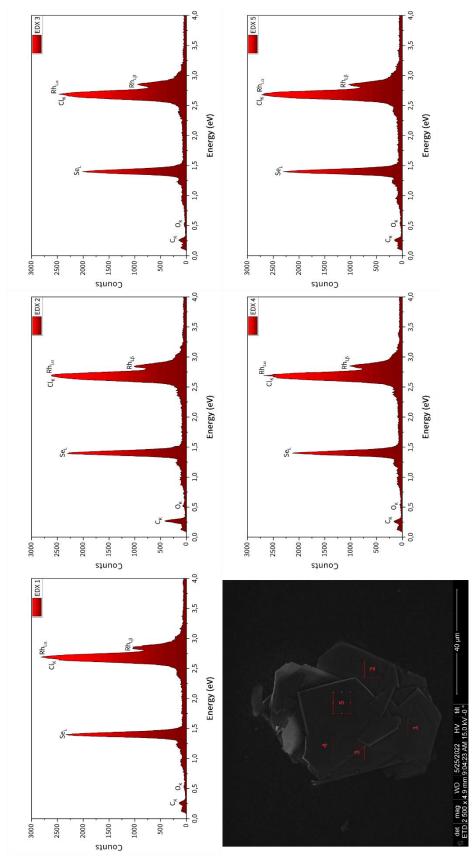


Fig. S1: Proposed and modified solid state reaction for the synthesis of RhSeCl.¹ While in the initial reaction an excess of Se was present, yellow crystals of SeCl₄ have been formed. To counteract this factor, we have reformulated the reaction equation and added rhodium so that no by-products are formed.

Fig. S2: Overview of the CVT growth experiments. All experiments were done with the same starting materials, only an excess RhCl₃ was used. The temperature gradient [$\Delta T = 100 \text{ K}$ ($T_1 = 900 \,^{\circ}\text{C}$, $T_2 = 1000 \,^{\circ}\text{C}$)] and the heating rate of 2,5 K/min were the same. The temperature was hold for 5 (10) days and then cooled down to room temperature. Till a certain excess (0.04 mmol) of RhCl₃ the crystals were growing larger, but after exceeding it the impact of the raised amount was minor on the crystal growth.

Energy dispersive X-ray spectroscopy

Fig. S3: EDX-spectra of an RhSeCl crystal are showing a strong overlap between the Cl_K and the $Rh_{L\alpha}$ energy line.

Tab. S1: Atomic distribution of the elements in the measured areas according to the EDX spectra.

Rh / At-%		Cl / At-%	Se / At-%	
1	35.9	30.8	33.3	
2	36.0	30.8	33.1	
3	35.3	30.3	34.4	
4	35.2	30.2	34.6	
5	35.4	30.4	34.2	
Average	35.6	30.5	33.9	

Crystal structure

Tab. S2: Listing of measured atomic distances and the octahedra angle with the DIAMOND Software² as well as the calculated mono- and interlayer height in RhSeCl, RhTeCl, RhCl₃ and Rh₂Se₃.³⁻⁵

			RhSeCl					
d_{Rh-Cl} / Å	d_{Rh-Se} / Å	d_{Rh-Rh} / Å	∡ _{octa} / Å	l_{octa} / Å	h_{mono} / Å	h_{inter} / Å		
2.51	2.38	3.49	175.5	4.89	2.78	5.79		
RhTeCl								
d_{Rh-Cl} / Å	d_{Rh-Te} / Å	d_{Rh-Rh} / Å	∡ _{octa} / Å	l_{octa} / Å	h_{mono} / Å	h _{inter} / Å		
2.51	2.56	3.87	177.4	5.08	2.73	5.69		
2.54	2.57	_	178.1	5.11	_	_		
_	2.54	_	_	_	_	_		
_	2.58	_	_	_	_	_		
RhCl ₃								
d_{Rh-Cl} / Å	d_{Rh-Se} / Å	d_{Rh-Rh} / Å	₄ _{octa} / Å	l_{octa} / Å	h_{mono} / Å	h_{inter} / Å		
2.31	_	3.43	175.8	4.58	2.49	5.70		
2.29	_	_	175.9	4.61	_	_		
Rh ₂ Se ₃								
d_{Rh-Cl} / Å	d_{Rh-Se} / Å	d_{Rh-Rh} / Å	₄ _{octa} / Å	l_{octa} / Å	h _{mono} / Å	h _{inter} / Å		
_	2.46	3.35	161.5	4.92	_	_		
_	2.50	-	169.4	4.98	-	_		
_	2.42	_	160.7	4.85	_	_		
_	2.53	_	_	_	_	_		

References

- J. Kretschmer, *PhD Thesis*, Rheinischen Friedrich–Wilhelms–Universität Bonn, 2018.
- 2 Dr. H. Putz & Dr. K. Brandenburg GbR, Diamond Crystal and Molecular Structure Visualization, 2022.
- J. Köhler and W. Urland, *Zeitschrift für anorganische und allgemeine Chemie*, 1997, **623**, 583–586.
- 4 H. Bärnighausen and B. Handa, *Journal of the Less Common Metals*, 1964, **6**, 226–231.
- 5 E. Parthé, E. Hohnke and F. Hulliger, *Acta Crystallographica*, 1967, **23**, 832–840.