In-situ growing amorphous vanadium oxide nanospheres on carbon

cloth as free-standing cathodes toward high performance aqueous

zinc-ion batteries

Xuguang Han^{a, b},[†] Yan Zhang^a,* [†] Mengmeng Liu^a, Yifei Sun^a, Wenshan Gou^a, Zhao Xu^a and Chang Ming Li^b*

^a Institute of Advanced Cross-field Science, College of Life Sciences, Qingdao University, Qingdao 11065, P. R. China.

^b Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, P.R. China.

⁺ Xuguang Han and Yan Zhang contributed equally to this work.

* Corresponding authors: ecmli@swu.edu.cn; yzhang_iacs@qdu.edu.cn

Figure S1. XRD patterns of the VO_x compounds were obtained at different calcination temperatures (350 °C, 550 °C, 750 °C).

Figure S2. SEM image of the powder VO_x MSs.

Figure S3. Self-discharge performance of VO_x MSs@ACC electrodes.

Figure S4. The galvanostatic discharge/charge profiles of the VO_x MSs@ACC at 2.7 A m^{-2} of the 1st cycle.

Figure S5. XRD patterns of VO_x MSs@ACC electrode at the pristine state and after the 1^{st} charge process.

Figure S6. V 2p XPS spectra of VO_x MSs@ACC electrode at pristine state (a) and after the 1st charge process (b).

Figure S7. (a) CV profile with the capacitive contribution at 0.06 mV s⁻¹. (b) Capacitive-diffusion contributions at various sweep rates.

Table S1. ICP-MS results of vanadium content of electrodes immersed in electrolytes after 3 days in the inset.

Samples	V content (mg L ⁻¹)
VO _x MSs@ACC	8.09
the powder VO _x MSs	8.48

Table S2. Comparison of the electrochemical performance at a small current density with those of the reportedvanadium-based cathodes for aqueous ZIBs.

Materials	Cycling performance	Areal capacity	Ref.
		(mAh cm ⁻²)	Nen.
NH ₄ V ₃ O ₈ ·0.5H ₂ O	85% after 120 cycles at 5.4 $\triangle m^{-2}$	0.976	1
Na ₃ V ₂ (PO4) ₃	80% after 100 cycles at 2.7 A m ⁻²	0.23	2
V ₂ O _x @V2CTx	81.6% after 200 cycles at 27 A m ⁻²	0.89	3
(NH ₄) ₂ V ₁₀ O ₂₅ ·8H ₂ O	73.2% after 100 cycles at 2.7 A m ⁻²	1.06	4
V₂O₅∙nH₂O/rGO-PVA	28.5% after 100 cycles at 2.7 A m ⁻²	0.628	5
$Na_2V_6O_{16} \cdot 1.63H_2O$	78% after 100 cycles at 2.7 A $m^{\text{-2}}$	0.79	6
VO _x MSs@ACC	82.3% after 100 cycles at 2.7 A m ⁻²	1.79	This work

	Collector	Areal capacity	Cycling performance	Mass	
Materials				Loading	Ref.
		(man chi)		(mg cm ⁻²)	
V ₆ O ₁₃	carbon cloth 0.446 at 10	0 446 at 10 A m ⁻²	99% after 1000 cycles	1.0	7
		0.440 at 10 A m	at 243 A m ⁻²		
V ₆ O ₁₃	carbon cloth	0.825 at 13.5 A m ⁻²	85.3% after 1000	1.5	8
			cycles at 54 A m ⁻²		
CaVOH@CC	carbon cloth 1.599 at 2.7 A m ⁻	$1 = 00 = 27 \Lambda m^{-2}$	70% after 800 cycles	~7.0	9
		1.599 dl 2.7 A m -	at 27 A m ⁻²		
KNVO	stainless steel	$0.402 \text{ at } 2.7.4 \text{ m}^2$	90% after 3000 cycles	1.2	10
	net	0.492 at 2.7 A m ⁻² net	at 135 A m ⁻²		
CuVOH@CC	carbon cloth	1.563 at 27 A m ⁻²	50% after 2000 cycles	~7.0	11
			at 27 A m ⁻²		
VO _x MSs@ACC	carbon cloth	1.794 at 2.7 A m ⁻²	80% after 2500 cycles	2.1	This
			at 135 A m ⁻²		work

Table S3. Comparison of the electrochemical performance in this work with those of the recently reported vanadium oxides-based cathodes for ZIBs.

References:

- H. Jiang, Y. Zhang, Z. Pan, L. Xu, J. Zheng, Z. Gao, T. Hu, C. Meng and J. Wang, NH₄V₃O₈·0.5H₂O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode, *Mater. Chem. Front.* 2020, **4**, 1434-1443.
- J. S. Ko, P. P. Paul, G. Wan, N. Seitzman, R. H. DeBlock, B. S. Dunn, M. F. Toney and J. Nelson Weker, NASICON Na₃V₂(PO₄)₃ Enables Quasi-Two-Stage Na⁺ and Zn²⁺ Intercalation for Multivalent Zinc Batteries, *Chem. Mater.*, 2020, **32**, 3028-3035.
- R. Venkatkarthick, N. Rodthongkum, X. Zhang, S. Wang, P. Pattananuwat, Y. Zhao, R. Liu and J. Qin, Vanadium-Based Oxide on Two-Dimensional Vanadium Carbide MXene (V₂O_x@V₂CTx) as Cathode for Rechargeable Aqueous Zinc-Ion Batteries, *ACS Appl. Energy Mater.*, 2020, **3**, 4677-4689.
- H. Jiang, Y. Zhang, Z. Pan, L. Xu, J. Zheng, Z. Gao, T. Hu and C. Meng, Facile hydrothermal synthesis and electrochemical properties of (NH₄)₂V₁₀O_{25'8}H₂O nanobelts for high-performance aqueous zinc ion batteries, *Electrochim. Acta*, 2020, **332**, 135506.
- J. Sun, Y. Zhang, Y. Liu, H. Jiang, X. Dong, T. Hu and C. Meng, Hydrated vanadium pentoxide/reduced graphene oxide-polyvinyl alcohol V₂O₅·nH₂O/rGO-PVA film as a binder-free electrode for solid-state Zn-ion batteries, *J. Colloid Interface Sci.*, 2021, **587**, 845-854.
- P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan, J. Li, W. Luo, W. Yang, W. Zhang, L. Zhou, Z. Zhou and L. Mai, Highly Durable Na₂V₆O₁₆.1.63H₂O Nanowire Cathode for Aqueous Zinc-Ion Battery, *Nano Lett.*, 2018, **18**, 1758-1763.
- 7. M. Tamilselvan, T. V. M. Sreekanth, K. Yoo and J. Kim, Binder-free coaxially grown V_6O_{13} nanobelts on carbon cloth as cathodes for highly reversible aqueous zinc ion batteries, Appl.

Surf. Sci., 2020, **529**, 147077.

- 8. P. He, J. Liu, X. Zhao, Z. Ding, P. Gao and L.-Z. Fan, A three-dimensional interconnected V_6O_{13} nest with a V⁵⁺-rich state for ultrahigh Zn ion storage, J Mater. Chem. A, 2020, **8**, 10370-10376.
- J. Ren, P. Hong, Y. Ran, B. Wang, T. Chen and Y. Wang, High-loading and high-performance zinc ion batteries enabled by electrochemical conversion of vanadium oxide cathodes, Electrochim. Acta, 2022, 415, 140265.
- T. Zhou, H. Xiao, L. Xie, Q. Han, X. Qiu, Y. Xiao, X. Yang, L. Zhu and X. Cao, Research on the electrochemical performance of polyoxovanadate material K₄Na₂V₁₀O₂₈ as a novel aqueous zinc-ion batteries cathode, Electrochim. Acta, 2022, **424**, 140621.
- J. Ren, P. Hong, Y. Ran, Y. Chen, X. Xiao and Y. Wang, Binder-free three-dimensional interconnected CuV₂O₅·nH₂O nests as cathodes for high-loading aqueous zinc-ion batteries, Inorg. Chem. Front., 2022, **9**, 792-804.