Experimental Section

Synthesis of La-VS_{2-x}

3 mmol Na₃VO₄·12H₂O and 15 mmol C₂H₅NS were dissolved in 40 mL of deionized water, and then 0.05 mM La₂(CO₃)₃·8H₂O was added under stirring for 10 min. Afterwards, a piece of carbon cloth (CC, 1 cm \times 2 cm) was transferred to a Teflon-lined stainless-steel autoclave and kept at 170 °C for 24 h. The obtained La-VS_{2-x} grown on CC was washed with deionized water and ethanol several times. For comparison, pristine VS₂ grown on CC was prepared by the same procedure without addition of La₂(CO₃)₃·8H₂O.

Electrochemical measurements

Electrochemical measurements were carried out on a CHI-660E electrochemical workstation using a standard three-electrode system. The Ag/AgCl, graphite rod, and catalyst coated on CC (1×1 cm²) were used as reference electrode, counter electrode, and working electrode, respectively. All potentials were referenced to reversible hydrogen electrode (RHE) according to the equation: E (V vs. RHE) = E (V vs. Ag/AgCl) + 0.198 V + 0.059 × pH. The NO₃RR measurements were carried out in Ar-saturated 0.5 M Na₂SO₄ + 0.1 M KNO₃ electrolyte using an H-type twocompartment electrochemical cell separated by a Nafion 211 membrane. The Nafion membrane was pretreated by heating it in 5% H₂O₂ aqueous solution at 80 °C for 1 h and then in deionized water at 80 °C for another 1 h. After each chronoamperometry test for 1 h, the produced NH₃ and other possible by-products (NO₂⁻ and N₂H₄) were analyzed by various colorimetric methods using UV-vis absorbance spectrophotometer (MAPADA P5), while the gas products (H_2, N_2) were analyzed by gas chromatography (Shimadzu GC2010). The detailed determination procedures are given in our previous publication[1].

Calculations of NH₃ yield rate and NH₃-Faradaic efficiency

NH₃ yield rate (
$$\mu g h^{-1} m g_{cat}^{-1}$$
) = $\frac{c_{NH_3} \times V}{t \times A}$ (1)

NH₃-Faradaic efficiency (%) =
$$\frac{8 \times F \times c_{\rm NH_3} \times V}{17 \times Q} \times 100\%$$
 (2)

where $c_{\rm NH3}$ (µg mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of the electrolyte, t (h) is the reduction time, A (cm⁻²) is the surface area of CC (1×1 cm²), F (96500 C mol⁻¹) is the Faraday constant, Q (C) is the quantity of applied electricity.

Characterizations

Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were carried out on a Tecnai G² F20 microscope. X-ray diffraction (XRD) pattern was conducted on a Rigaku D/max 2400 diffractometer. Scanning electron microscopy (SEM) was carried out on a ZEISS GeminiSEM-500 microscope. Electron paramagnetic resonance (EPR) measurements were conducted on a Bruker ESP-300 spectrometer.

Calculation details

Spin-polarized DFT calculations were performed using a Cambridge sequential total energy package (CASTEP). The exchange-correlation interactions were modeled by using Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA) functional. The description of van der Waals interactions was based on a DFT-D correction method. During the geometry optimization, a cutoff energy of 450 eV was used and the convergence tolerance was set to be 1.0×10^{-5} eV for energy and 0.02 eV Å⁻¹ for force. The Brillouin zone was sampled by $3 \times 3 \times 1$ Monkhorst–Pack k-point mesh. The VS₂ (001) was modeled by a 4×4 supercell, and a vacuum region of 15 Å was used to separate adjacent slabs. The adsorption energy (ΔE) is calculated as[2]

$$\Delta E = E_{\rm ads/slab} - E_{\rm ads} - E_{\rm slab} \tag{3}$$

where $E_{ads/slab}$, E_{ads} and E_{slab} are the total energies for adsorbed species on slab, adsorbed species and isolated slab, respectively.

The computational hydrogen electrode (CHE) model was adopted to calculate the Gibbs free energy change (ΔG) for each elementary step as follows:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{4}$$

where ΔE is the adsorption energy, ΔZPE is the zero-point energy difference and $T\Delta S$ is the entropy difference between the gas phase and adsorbed state. The entropies of

free gases were acquired from the NIST database. Given that it is difficult to directly calculate the energy of charged NO₃⁻, the adsorption free energy of NO₃⁻ ($\Delta G(*NO_3)$) was calculated with assistance of the gaseous HNO₃ as follows[3]

$$\Delta G(*NO_3) = G(*NO_3) - G(*) - [G(HNO_3) - 0.5 \times G(H_2)] + \Delta G_{correct}$$
(5)

where G(*) and $G(*NO_3)$ are the Gibbs free energies of the bare catalyst and that with the adsorbed NO₃⁻, respectively. $G(HNO_3)$ and $G(H_2)$ represent the Gibbs free energies of HNO₃ and H₂ molecule, respectively.

Fig. S1. La-dopant formation energy (E_{La}) of V_S-free La-VS₂ and V_S-containing La-VS_{2-x}.

Fig. S2. Atomic structures of VS $_2$, VS $_{2-x}$ and La-VS $_{2-x}$.

Fig. S3. Electron contour maps of (a) VS_2 and (b) VS_{2-x} .

Fig. S4. PDOS plot of La/S orbital hybridization in La-VS_{2-x}.

Fig. S5. Variations of energy and temperature during the AIMD simulation for assessing the thermodynamic stability of La-VS_{2-x} (inset: geometric structure of La-VS_{2-x} after AIMD simulation).

It is seen that both energy and temperature keep the equilibrium states at 600 K, confirming the high thermodynamic stability of $La-VS_{2-x}$.

Fig. S6. Average potential profiles along c-axis direction for calculating the work functions (Φ) of VS₂, VS_{2-x} and La-VS_{2-x}.

Fig. S7. Electrochemical impendence spectra of VS_2 and $La-VS_{2-x}$.

Fig. S8. Flow chart of the electrocatalytic NO₃RR measurement procedure.

Fig. S9. NH₃ yield rates and FE_{NH3} of La-VS_{2-x} at different nitrate concentrations.

We investigate the influence of starting nitrate concentration on the NO₃RR performance of La-VS_{2-x}. It is seen in Fig. S9 that NH₃ yield rate is monotonously increased with increasing nitrate concentration, while FE_{NH3} peaks at 0.1 M. As FE_{NH3} is commonly regarded as a more important indicator than NH₃ yield rate for NH₃ electrosynthesis, we take 0.1 M as the optimum nitrate concentration for our NO₃RR measurements. The reduced FE_{NH3} beyond 0.1 M can be due presumably to the adverse effects of expedited competing HER at lower nitrate concentration (0.05 M) and plentiful NO₃⁻ occupying the active sites at higher nitrate concentration (0.3~0.5 M)[4].

Fig. S10. Potential-dependent chronoamperometry curves of La-VS_{2-x} after 1 h of NO₃RR electrolysis.

Fig. S11. (a) UV-vis absorption spectra of NH_4Cl assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of NH_3 concentrations.

Fig. S12. (a) UV-vis absorption spectra of KNO_2 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of NO_2^- concentrations.

Fig. S13. (a) UV-vis absorption spectra of N_2H_4 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S14. Calculated NH_3 partial current densities of La-VS_{2-x} at various potentials.

Fig. S15. (a) NO₃RR performances of La-VS_{2-x} with different La contents (3.1-6.5 wt%) at -0.6 V. (b) EXAFS spectra of 4.8 and 6.5 wt% La-VS_{2-x} and La₂O₃ reference. (c) TEM image and XRD pattern (inset) of La₂O₃ nanoplates, which was prepared by a reported method[5].

It is seen in Fig. S15a that the NO₃RR performance of La-VS_{2-x} peaks at 4.8 wt%, whereas the lower (3.1 wt%) and higher (6.5 wt%) La contents lead to the distinct performance degradation. The poor performance of 3.1 wt% La-VS_{2-x} can be explained by the insufficient single-atom La active sites, while the reduced performance of 6.5 wt% La-VS_{2-x} can be attributed possibly to the formation of La₂O₃ species due to the excessive La addition, as evidenced by the EXAFS spectra (Fig. S15b) where 6.5 wt% La-VS_{2-x} shows the characteristic La-La bond of La₂O₃ reference. To verify this, we prepare La₂O₃ nanoplates (Fig. S15c) which exhibits a very poor NO₃RR property (Fig. S15a). Hence, the presence of NO₃RR-unfavored La₂O₃ species on 6.5 wt% La-VS_{2-x} is the main cause for its decreased performance. Therefore, the abundant atomically dispersed La-dopants involved in 4.8 wt% La-VS_{2-x} contribute to the highest NO₃RR performance.

Fig. S16. Amounts of produced NH_3 under different conditions: electrolysis in NO_3^- containing electrolyte at -0.6 V; electrolysis in NO_3^- -free electrolyte at -0.6; electrolysis in NO_3^- -containing electrolyte at open-circuit potential (OCP).

Fig. S17. (a) SEM image, (b) XRD pattern and (c) La content of La-VS_{2-x} after stability tests.

Fig. S18. ECSA-normalized NH₃ yield rates and FE_{NH3} of VS₂ and La-VS_{2-x} at -0.6 V.

Fig. S19. Optimized atomic configurations of NO_3^- adsorption on VS_2 , VS_{2-x} and La- VS_{2-x} .

Fig. S20. Differential charge density maps of NO_3^- adsorption on (a) VS_2 and (b) VS_{2-x} (yellow: accumulation, cyan: depletion).

Fig. S21. Optimized atomic configurations of NO₃RR intermediates on VS₂.

Fig. S22. Optimized atomic configurations of NO₃RR intermediates on VS_{2-x} .

Fig. S23. Optimized atomic configurations of NO_3RR intermediates on La-VS_{2-x}.

Table S1. Structural parameters extracted from the La L₃-edge EXAFS fitting.

Sample	Shell	CN	R (Å)	$\sigma^2(10^{-3}\text{\AA})$	$\Delta E_0 (\mathrm{eV})$	R factor (%)
La-VS _{2-x}	La-S	5.2	2.47	8.5	-3.7	0.012

CN is the coordination number; R is interatomic distance; σ^2 is Debye-Waller factor; ΔE_0 is edge-energy shift; R factor is used to value the goodness of the fitting.

Catalyst	Electrolyte	NH ₃ yield rate (mg h ⁻¹ cm ⁻²)	FE _{NH3} (%)	Potential (V vs RHE)	Ref.
Fe ₃ O ₄ /SS	0.1 M NaOH (0.1 M NaNO ₃)	10.15	91.5	-0.5	[6]
Co2AlO4/CC	0.1 M PBS (0.1 M NO ₃ ⁻)	7.9	92.6	-0.7	[7]
ZnCo ₂ O ₄ NSA/CC	0.1 M NaOH (0.1 M NaNO ₃)	10.79	98.33	-0.6	[8]
PdCoO/NF	0.5 M K ₂ SO ₄ (200 mg/LNO ₃ ⁻)	3.47	88.6	-1.3	[9]
Poly-Cu ₁₄ cba	0.5 M K ₂ SO ₄ (250 ppm NO ₃ ⁻)	2.84	90	-0.15	[10]
Pd nanocrystalline	0.1 M Na ₂ SO ₄ (0.1 M NO ₃ ⁻)	9.32	79.91	-0.7	[11]
a-RuO ₂	0.5 M Na ₂ SO ₄ (200 ppm NO ₃ ⁻)	1.97	97.46	-0.35	[12]
Rh@Cu	0.1 M Na ₂ SO ₄ 0.1 M KNO ₃	13.57	93	-0.2	[13]
Cu–PTCDA	1 M PBS (500 ppm KNO ₃)	0.44	85.9	-0.4	[14]
CoO@NCNT /GP	0.1 M NaOH 0.1 M NaNO ₃	9.04	93.8	-0.6	[15]
TiO ₂ NTs/CuO _x	0.5 M Na ₂ SO ₄ 100 ppm KNO ₃	1.24	92.23	-0.75	[16]
Co-P/TP	0.2 M Na ₂ SO ₄ (200 ppm NO ₃ ⁻)	0.42	93.6 ±3.3	-0.3	[17]
Cu ₃ P NA/CF	0.1 M PBS (0.1 M NaNO ₂)	1.63	91.2±2.5	-0.5	[18]
La-VS _{2-x}	0.1 M Na ₂ SO ₄ 0.1 M NaNO ₃	11.3	96.6	-0.6	This work

Table S2. Comparison of the optimum NH_3 yield and FE_{NH3} for the recently reported state-of-the-art NO_3RR electrocatalysts at ambient conditions.

Supplementary references

- [1].K. Chen, Y. Luo, P. Shen, X. Liu, X. Li, X. Li and K. Chu, Dalton Trans., 2022, 51, 10343-10350.
- [2].A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energy Environ. Sci.*, 2010, 3, 1311-1315.
- [3]. D. Wu, P. Lv, J. Wu, B. He, X. Li, K. Chu, Y. Jia and D. Ma, J. Mater. Chem. A, 2023, 11, 1817-1828.
- [4].Y. Wang, H. Li, W. Zhou, X. Zhang, B. Zhang and Y. Yu, Angew. Chem. Int. Edit., 2022, 134, e202202604.
- [5].B. Xu, Z. Liu, W. Qiu, Q. Liu, X. Sun, G. Cui, Y. Wu and X. Xiong, *Electrochim. Acta*, 2018, 298, 106-111.
- [6].X. Fan, L. Xie, J. Liang, Y. Ren, L. Zhang, L. Yue, T. Li, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, Q. Liu, Q. Kong and X. Sun, *Nano Res.*, 2021, 15, 3050–3055.
- [7].Z. Deng, J. Liang, Q. Liu, C. Ma, L. Xie, L. Yue, Y. Ren, T. Li, Y. Luo, N. Li, B. Tang, A. A. Alshehri, I. Shakir, P. O. Agboola, S. Yan, B. Zheng, J. Du, Q. Kong and X. Sun, *Chem. Eng. J.*, 2022, **435**, 135104.
- [8].Z. Li, J. Liang, Q. Liu, L. Xie, L. Zhang, Y. Ren, L. Yue, N. Li, B. Tang, A. A. Alshehri, M. S. Hamdy, Y. Luo, Q. Kong and X. Sun, *Mater. Today Phys.*, 2022, 23, 100619.
- [9].M. Liu, Q. Mao, K. Shi, Z. Wang, Y. Xu, X. Li, L. Wang and H. Wang, ACS Appl. Mater. Interfaces, 2022, 14, 13169-13176.
- [10]. Y. M. Wang, J. Cai, Q. Y. Wang, Y. Li, Z. Han, S. Li, C. H. Gong, S. Wang, S. Q. Zang and T. C. Mak, Angew. Chem., Int. Ed., 2022, 134, e202114538.
- [11]. Y. Han, X. Zhang, W. Cai, H. Zhao, Y. Zhang, Y. Sun, Z. Hu, S. Li, J. Lai and L. Wang, J. Colloid Interf. Sci., 2021, 600, 620-628.
- [12]. Y. Wang, H. Li, W. Zhou, X. Zhang, B. Zhang and Y. Yu, Angew. Chem., Int. Ed., 2022, 134, e202202604.
- [13]. H. Liu, X. Lang, C. Zhu, J. Timoshenko, M. Rüscher, L. Bai, N. Guijarro, H. Yin, Y. Peng, J. Li, Z. Liu, W. Wang, B. R. Cuenya and J. Luo, *Angew. Chem., Int. Ed.*, 2022, **61**, e202202556.
- [14]. G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, *Nat. Energy*, 2020, 5, 605-613.
- [15]. Q. Chen, J. Liang, L. Yue, Y. Luo, Q. Liu, N. Li, A. A. Alshehri, T. Li, H. Guo and X. Sun, *Chem. Commun.*, 2022, 58, 5901-5904.
- [16]. W. Qiu, X. Chen, Y. Liu, D. Xiao, P. Wang, R. Li, K. Liu, Z. Jin and P. Li, *Appl. Catal.*, *B*, 2022, 315, 121548.
- [17]. Z. Li, G. Wen, J. Liang, T. Li, Y. Luo, Q. Kong, X. Shi, A. M. Asiri, Q. Liu and X. Sun, *Chem. Commun.*, 2021, 57, 9720-9723.
- [18]. J. Liang, B. Deng, Q. Liu, G. Wen, Q. Liu, T. Li, Y. Luo, A. A. Alshehri, K. A. Alzahrani and D. Ma, *Green Chem.*, 2021, 23, 5487-5493.