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Experimental Section

DFT calculation

All calculations were performed with periodic DFT using the Gaussian plane wave
method implemented in CP2K’s Quickstep module.!” The explorative studies of the
catalysts structure were performed using the molecularly optimized basis set DZVP-
MOLOPT-SR-GTH for each atom with a Goedecker-Teter-Hutter (GTH)
pseudopotential > The calculations were conducted using the generalized gradient
approximation and the Perdew-Burke-Ernzerhof (PBE) functional’ for DOS and Band
Structure. A 2D XCP-1 was employed and 2 x 2 x 1 supercell with 572 atoms model
was employed to calculated DOS and Band Structure. The k-path of Band Structure
was generated by SeeK-path,? insert 10 point in every path. An energy convergence for
the self-consistent field (SCF) calculation was set to 2 x 10~® Hartree. The energy cutoff
of 400 Ry was used throughout the calculations.

The excited state structure was optimized by TDDFPT with Auxiliary Density Matrix
Method (ADMM) approximated PBE functional and semiempirical Simplified
Tamm—Dancoff Approximation (sTDA) in the CP2K program package.’”!! The
ADMM basis cFIT3 has been used for C, H, O, S element and admm-dzp has been used
for Pb and I. The Convergence criterion of all excitation energies was set as 1 x 107
eV.

All the input file was generated by Multiwfn.!?> The structure and VBM/CBM pictures
were generated by VESTA.!3
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Figure S1. PXRD patterns of (a) simulated and (b) as-synthesized XCP-1.
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Figure S2. FT-IR spectra of (a) the ligand H,TMBD and (b) as-synthesized XCP-1.
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Figure S3. (a) PXRD patterns and (b) FT-IR spectra of XCP-1 before and after

treatment in different solvents for 48 h.
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Figure S4. Thermogravimetric curve of XCP-1 under N, atmosphere.
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Figure S5. Absorption spectrum of XCP-1 by UV-vis diffuse reflectance measurement.

Inset: Kubelka—Munk plot transformed from diffuse reflectance data.
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Figure S6. Absorption spectrum of H,TMBD by UV-vis diffuse reflectance
measurement. Inset: Kubelka—Munk plot transformed from diffuse reflectance data.
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Figure S7. The absorption and emission (A= 450 nm) spectra of XCP-1.
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Figure S8. UV-vis absorption spectra of XCP-1 in single-crystal state and manually

ground powders.
30 4 Em =527 nm
Em =575 nm
G Em =654 nm
O 25-
~—
X
S 20 i
>
—
72
C 15'
)
i
£ 104
—
O 5.
0 T T
400 450 500 550

Wavelength (nm)

Figure S9. Excitation spectra of XCP-1 when monitored by 527, 575 and 654 nm.
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Figure S10. Photoluminescent spectra and CIE coordinate diagrams of XCP-1 under
excitation at 450, 500, and 530 nm, respectively.

1-XCP-1
2-XCP-1
3-XCP-1
1-Irradiated for 3d
2-Irradiated for 3d
3-Irradiated for 3d

Normalized Intensity

500 550 600 650 700 750 800
Wavelength (nm)

Figure S11. Emission spectra of three sample of XCP-1 measured after irradiation for
3d.
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Figure S12. The emission spectra of H,;TMBD at different concentrations when excited
at 350 nm.
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Figure S13. The emission spectra of XCP-1 and ligand H,TMBD when excited at 450

nm.



d
Decay
Fit
=)
S
2 2.79 us
7]
c
Q
=
-
0
0 25 _ 50 75 100
Time (us)
b Decay
Fit
=
20,
> 3.58 us
K7
Q
<
—l
o
0 25 5 75 100

Lifetime (us)

Figure S14. Photoluminescent decay curve and fitting plot of XCP-1 for the emission

peak at 527 nm at (a) 300 K and (b) 78 K, respectively when excited at 450 nm.
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Figure S15. Photoluminescent decay curve and fitting plot of XCP-1 for the emission

peak at 654 nm at (a) 300 K, (b) 200 K and (c) 78 K, respectively when excited at 450

nm.
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Figure S16. Photoluminescent decay curve and fiting plot of XCP-1 for the emission
peak at 654 nm at (a) 78 K, (b) 200 K and (¢)300 K, respectively when excited at 510

nm.
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Figure S17. (a, b) Temperature-dependent emission spectra and (c, d)
photoluminescent correlation maps of XCP-1 with excitation wavelength at (a, c) 450

and (b, d) 510 nm, respectively.
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Figure S18. Deformed structures of ground state and excited states of XCP-1 upon

different excitation energy calculating from DFT method.
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Figure S19. The photographs under (a) ambient light and (b) UV 360 nm of XCP-1
obtained from the cycling experiments of immersion in 700 ppm Hg?* solution for 18 s
or successively washing with ethanol.
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Figure S20. Photoluminescent spectra of XCP-1 after immersion in Hg?* solutions with

different concentrations when excited at 510 nm.
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Figure S21. Plots of photoluminescence intensity vs. Hg>* concentrations varying from
200 to 700 ppm. (a) Emission intensity at 527 nm when excited at 450 nm (correlation
coefficient: 0.920), (b) Emission intensity at 575 nm when excited at 510 nm
(correlation coefficient: 0.902), and (c) Emission intensity at 654 nm when excited at

510 nm (correlation coefficient: 0.864).
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Figure S22. The FT-IR spectra of XCP-1 after immersion in different metal ion

solutions.
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Figure S23. (a) XPS spectra of XCP-1. High-resolution (b) S 2p, (c) O 1s, and (d) I 3d

spectrum.
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Figure S24. (a) XPS spectra of XCP-1 after treatment in 700 ppm Hg?* solution. High-
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resolution (b) S 2p, (c) O 1s, and (d) I 3d spectrum.
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Figure S25. The excitation spectra of XCP-1 after immersion in different metal ion

solutions.
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Figure S26. FT-IR spectra of XCP-1 obtained from the cycling experiments of

immersion in 700 ppm Hg?* solution for 18 s or successively washing with ethanol.
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Figure S27. Photoluminescent decay curve of XCP-1 and XCP-1+700 ppm Hg?* for
the emission peak at (a) 527 nm and (b) 654 nm, respectively when excited at 359 nm.



Table S1. Crystallographic data and structure refinement result for XCP-1.

Compound XCP-1
Empirical formula CsHglO,PbS,
Formula weight 508.32
Temperature (K) 300 K
Crystal system orthorhombic
Space group Pnma

Unit cell dimensions

VA3, Z

Density (calculated) (g cm™)
F(000)

Goodness-of-fit on F?

Final R indexes [/>=2c (/)]

Final R indexes [all data]

a (A)=8.5418(7)

b (A)=22.790(2)

¢ (A)=10.2937(10)
a (°)= 90

B(°)=90

7 (°)=90
2003.9(3), 8

3.370

1800.0

1.042

R, =0.0271, wR, = 0.0648

R, =0.0303, wR, =0.0667

Ry=2(|[Fol-[Fel)/ZIFol; ® WR=(Xw(Fo*-F )/ 2Zw(Fo?)*)"?



Table S2. Summary of luminescent lifetimes for XCP-1.

Temperature [K] Aex [nm] Aem [MM] Tav (18]
300 450 527 2.79
78 450 527 3.58
300 450 654 85.66
200 450 654 153.4
78 450 654 172.8
300 510 654 71.2
200 510 654 87.75

78 510 654 54.33



Table S3. Summary of photophysical properties for XCP-1 at 300 and 77 K.

Temperature [K]

300

78

300

78

300

78

300

78

Ae [nm]

5271

5271l

6542l

6541

575t

5751

654]

6541b)

Stokes Shift [nm (eV)]

77 (0.40)
77
204 (0.86)
204
125 (0.27)
125
204 (0.54)

204

FWHM [nm]
116
72
73
58
125
70
80

83

[a] and [b] represents the excitation wavelength is 450 and 510 nm, respectively.
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