# Ionic Guest in Ionic Host: Ionosilica Ionogel Composites *via* Ionic Liquid Confinement in Ionosilica Supports

Nicole Abdou<sup>1</sup>, Bruno Alonso<sup>1</sup>, Nicolas Brun<sup>1</sup>, Périne Landois<sup>2</sup>, Andreas Taubert<sup>3</sup>, Peter Hesemann<sup>1</sup>\*, Ahmad Mehdi<sup>1</sup>\*.

<sup>1</sup>ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.

<sup>2</sup>Laboratoire Charles Coulomb, Univ Montpellier, CNRS, Montpellier, France.

<sup>3</sup> Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476

Potsdam, Germany.

**Corresponding Authors** 

Prof. Dr. Ahmad MEHDI, ahmad.mehdi@umontpellier.fr

Dr. Peter HESEMANN, peter.hesemann@umontpellier.fr

## **Experimental section**

#### Chemicals

3-Aminopropyltrimethoxysilane 97%, 3-choropropyltrimethoxysilane 97% and N,N-Diisopropylethylamine 99% were purchased from ABCR. Formic acid (p.a.) was purchased from VWR and the ionic liquid 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide >99% was purchased from Iolitec. All reagents were used as received.

## **Materials Synthesis**

Tris(3-(trimethoxysilyl) propyl) amine (TTA) was synthesized following adapted previously described protocols: a mixture of 170 mL (1.0 mol) of 3-aminopropyltrimethoxysilane, 450 mL (2.5 mol) of 3-choropropyltrimethoxysilane and 494 mL (3.0 mol) of N,N-diisopropylethylamine was heated (160°C) and stirred under argon for 72 hours. After cooling at room temperature, salts were eliminated by filtration and the oily residue was distilled under vacuum (Bp= 165 °C at 0.1 mmHg) giving rise to TTA compound as a colorless viscous liquid with 80% yield.

### **Apparatus and Procedures**

Infrared Spectroscopy FTIR spectra were recorded on a PerkinElmer 100 FT spectrometer.

Thermogravimetric Analysis TGA experiments were performed on a TA Instruments Q50 apparatus. The samples were heated under an air stream from 25 to 1000 °C with a heating rate of 10 °C/min.

<sup>1</sup>H solid state Nuclear Magnetic Resonance NMR spectra were recorded at  $v_0(^{1}\text{H}) \equiv 600.1 \text{ MHz}$ on a VARIAN VNMR 600 spectrometer fitted with a Varian T3 MAS probe using 3.2 mm ZrO<sub>2</sub> rotors. The measurements were carried out at a temperature of 20 °C with a one pulse sequence (OP), a  $\pi/2$  pulse of 4 µs and a recycling delay of 10 s. The samples were static or rotated at a MAS frequency  $v_{MAS} = 24$  kHz. The chemical shift value was calibrated using Adamantane as a secondary reference (peak at 1.8 ppm). The acquisition window is 100 kHz and no line broadening has been applied. <sup>1</sup>H spectrum fitting has been achieved using pseudo-Voigt functions, with equivalent Gaussian and Lorentzian contributions, in the freely accessible *DmFit* software.[Massiot, D.; Fayon, F.; Capron, M.; King, I.; Calvé, S. L.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling One- and Two-Dimensional Solid-State NMR Spectra. *Magn. Reson. Chem.* 2002, *40*, 70-76. , http://nmr.cemhti.cnrs-orleans.fr/Dmfit/ ]

<sup>13</sup>C and <sup>29</sup>Si solid state NMR spectra were recorded at  $v_0({}^{13}C) \equiv 75.5$  MHz and  $v_0({}^{29}Si) \equiv 59.6$ MHz on a VARIAN VNMR 300 spectrometer fitted with Varian MAS probes using ZrO<sub>2</sub> rotors. <sup>13</sup>C solid state NMR spectra have been acquired using CP-MAS with <sup>1</sup>H decoupling in 3.2 mm rotors spun at  $v_{MAS} = 12$  kHz with a proton  $\pi/2$  pulse of 5 µs, a contact time of 1 ms and a recycle delay of 3s. Adamantane has been used as a secondary reference (left peak at 38.5 ppm). <sup>29</sup>Si spectra have been acquired using both CP-MAS and OP. CP-MAS spectra have been recorded in 3.2 mm rotors spun at  $v_{MAS} = 6$  kHz with a proton  $\pi/2$  pulse of 5 µs, a contact time of 5 ms and a recycle delay of 3 s. OP spectra have been recorded in 7.5 mm rotors spun at  $v_{MAS} = 5$  kHz with a a  $\pi/6$  pulse of 2 µs and a recycle delay of 60 s giving quantitative information on the siloxane condensation degree. Q<sub>8</sub>M<sub>8</sub><sup>H</sup> (octakis (dimethylsiloxy)octasilsesquioxane) has been used as a secondary reference (left peak at -2.25 ppm). The number of scans was in the range 1000–3000 for <sup>29</sup>Si OP and CP-MAS spectra, and of 2000–4000 for <sup>13</sup>C CP-MAS spectra. Raman spectra were recorded using a Xplora Horiba spectrometer. The samples were excited using a 473 nm laser (P= 25 mW, 1200 grooves) through a "x100" objective.2 acquisitions of 30 s were recorded under optimized focus conditions.

Electrochemical impedance spectroscopy (EIS) measurements were carried out using a BioLogic VSP-300 potentiostat and the EC-Lab software. The samples were ground, placed in a two-electrode Swagelok cell (stainless steel cell with Teflon seal), pressed down between the two cylindrical electrodes and placed in an oven at 30°C. EIS measurements were performed over the frequency range 1 Hz - 7 MHz with an amplitude of 200 mV (50 points collected per decade). The

ionic conductivity,  $\sigma$ , was calculated using the formula  $\sigma = \overline{RS}$ , where L is the thickness of the sample, S is the geometric surface area of the sample (which corresponds to the contact area between the powdered sample and the cylindrical electrode), and R is the bulk resistance. R was determined by fitting the Nyquist diagram to an equivalent electrical circuit model, using the EC-Lab software. Randles cell equivalent circuits with mixed kinetic and charge-transfer control were used as models.



 $R_s$ : Solution resistance

 $R_{ct}$ : Charge transfer resistance

*C*<sub>*dl*</sub>: Double layer capacitance

W: Warburg diffusion element



Figure S1: Solid-state <sup>29</sup>Si OP-NMR spectrum of  $^{TS_6^{lL}}$ .



Figure S2: <sup>1</sup>H NMR spectrum of the supernatant liquid of the  $TS_3^{lL}$ .



**Figure S3:** photograph of  $^{TS}_{6}$  monolith after drying.



**Figure S4:** photographs of the silica-based ionogels containing respectively 1 mL (left) and 6 mL (right) of IL.



**Figure S5:** (a) <sup>1</sup>H NMR MAS spectra of ground  $^{TS_{\chi}^{lL}}$  monoliths under static conditions, (b) <sup>1</sup>H NMR MAS spectra of ground  $^{TS_{3}^{lL}}$  and  $^{TMOS_{1}^{lL}}$  monoliths under static conditions.



**Figure S6**: Resulting fits of the <sup>1</sup>H NMR MAS spectra of ground  ${}^{TS_{\chi}^{lL}}$  monoliths ( $v_{MAS} = 24$  kHz). Full model and individual lines are shown. See the Table below for details.



**Table S1**: Data obtained via Dmfit of the <sup>1</sup>H solid-state MAS NMR spectra of ground  $TS_x^{lL}$  monoliths ( $v_{MAS} = 24$  kHz).

| Amplitude      |        | δ( <sup>1</sup> H) FWHM |       | Assignment                       |  |
|----------------|--------|-------------------------|-------|----------------------------------|--|
|                |        | (ppm)                   | (ppm) |                                  |  |
| $TS_{12}^{IL}$ |        |                         |       |                                  |  |
| #1             | 107.19 | 8.48                    | 0.039 | H1                               |  |
| #2             | 122.33 | 7.35                    | 0.03  | H2                               |  |
| #3             | 121.94 | 7.28                    | 0.03  | Н3                               |  |
| #4             | 2.36   | 5.01                    | 7.14  |                                  |  |
| #5             | 161.12 | 4.06                    | 0.05  | CH <sub>2</sub> -N               |  |
| #6             | 314.88 | 3.78                    | 0.04  | CH <sub>3</sub> -N               |  |
| #7             | 2.36   | 1.94                    | 6.10  |                                  |  |
| #8             | 169.79 | 1.74                    | 0.05  | $(CH_2)CH_2(CH_2)$               |  |
| #9             | 171.84 | 1.22                    | 0.05  | CH <sub>2</sub> -CH <sub>3</sub> |  |
| #10            | 321.00 | 0.79                    | 0.04  | CH <sub>3</sub>                  |  |
| $TS_6^{IL}$    |        |                         |       |                                  |  |
| #1             | 41.39  | 8.55                    | 0.06  | H1*                              |  |
| #2             | 7.47   | 8.44                    | 0.05  | H1*                              |  |
| #3             | 3.29   | 8.43                    | 0.02  | H1*                              |  |
| #4             | 3.13   | 8.41                    | 0.01  | H1*                              |  |
| #5             | 45.78  | 7.38                    | 0.05  | H2*                              |  |

|   | #6          | 52.61  | 7.32 | 0.04  | H2, H3*                                              |
|---|-------------|--------|------|-------|------------------------------------------------------|
|   | #7          | 9.07   | 7.26 | 0.04  | H3*                                                  |
|   | #8          | 7.27   | 4.44 | 9.75  |                                                      |
|   | #9          | 52.49  | 4.07 | 0.11  | CH <sub>2</sub> -N                                   |
|   | #10         | 104.29 | 3.80 | 0.072 | CH <sub>3</sub> -N                                   |
|   | #11         | 68.24  | 1.74 | 0.07  | (CH <sub>2</sub> )CH <sub>2</sub> (CH <sub>2</sub> ) |
|   | #12         | 4.38   | 1.64 | 1.66  |                                                      |
|   | #13         | 74.35  | 1.23 | 0.07  | CH <sub>2</sub> -CH <sub>3</sub>                     |
|   | #14         | 131.71 | 0.80 | 0.06  | CH <sub>3</sub>                                      |
| - | $TS_3^{IL}$ |        |      |       |                                                      |
| - | #1          | 55.48  | 8.65 | 0.15  | H1                                                   |
|   | #2          | 23.50  | 8.48 | 0.92  |                                                      |
|   | #3          | 9.68   | 8.45 | 0.12  |                                                      |
|   | #4          | 103.47 | 7.4  | 0.19  | H2, H3                                               |
|   | #5          | 12.91  | 7.16 | 0.75  |                                                      |
|   | #6          | 17.65  | 6.13 | 1.11  |                                                      |
|   | #7          | 55.32  | 4.09 | 0.23  | CH2-N                                                |
|   | #8          | 139.22 | 3.82 | 0.21  | CH3-N                                                |
|   | #9          | 82.45  | 2.27 | 9.04  |                                                      |
|   | #10         | 77.91  | 1.76 | 0.20  | $(CH_2)CH_2(CH_2)$                                   |
|   | #11         | 92.84  | 1.25 | 0.17  | CH <sub>2</sub> -CH <sub>3</sub>                     |
|   | #12         | 44.31  | 0.91 | 2.02  |                                                      |
|   | #13         | 183.14 | 0.83 | 0.15  | CH <sub>3</sub>                                      |
| - | $TS_1^{IL}$ |        |      |       |                                                      |
| - | #1          | 21.53  | 8.57 | 0.97  |                                                      |
|   | #2          | 13.09  | 7.47 | 0.49  | H1, H2, H3                                           |
|   | #3          | 13.22  | 6.2  | 1.82  |                                                      |
|   |             | I I    |      |       |                                                      |

| #4            | 15.62    | 3.9  | 0.58  | CH <sub>2</sub> -N/CH <sub>3</sub> -N                |  |
|---------------|----------|------|-------|------------------------------------------------------|--|
| #5            | 54.88    | 3.23 | 10.72 |                                                      |  |
| #6            | 6.17     | 1.77 | 0.38  | (CH <sub>2</sub> )CH <sub>2</sub> (CH <sub>2</sub> ) |  |
| #7            | 9.43     | 1.27 | 0.32  | CH <sub>2</sub> -CH <sub>3</sub>                     |  |
| #8            | 42.17    | 1.12 | 3.52  |                                                      |  |
| #9            | 18.49    | 0.86 | 0.32  | $CH_3$                                               |  |
| $TMOS_1^{IL}$ |          |      |       |                                                      |  |
| #1            | 19817.55 | 8.43 | 0.08  | H1                                                   |  |
| #2            | 22756.81 | 7.34 | 0.08  | H2                                                   |  |
| #3            | 21917.91 | 7.27 | 0.06  | Н3                                                   |  |
| #4            | 1017.83  | 5.66 | 0.10  |                                                      |  |
| #5            | 24911.85 | 4.07 | 0.08  | CH <sub>2</sub> -N                                   |  |
| #6            | 46799.98 | 3.79 | 0.11  | CH <sub>3</sub> -N                                   |  |
| #7            | 8458.99  | 3.78 | 0.11  |                                                      |  |
| #8            | 29127.12 | 1.75 | 0.09  | $(CH_2)CH_2(CH_2)$                                   |  |
| #9            | 29822.38 | 1.24 | 4.24  | CH <sub>2</sub> -CH <sub>3</sub>                     |  |
| #10           | 54811.64 | 0.8  | 0.47  | CH <sub>3</sub>                                      |  |
|               |          |      |       |                                                      |  |

<sup>\*</sup>Observation of a splitting that may be due to J couplings with <sup>14</sup>N nuclei. However, we considered the FWHM of the signals presenting no ambiguity.



**Figure S7**: (a) Nyquist plots obtained for the different silica-based *ionogels* samples using electrochemical impedance spectroscopy (EIS), (b) Nyquist plots of  $TS_1^{IL}$ ,  $TMOS_1^{IL}$  and [BMIM]NTf<sub>2</sub>.

|                | Resistance | Thickness | Thickness | Surface     | Conductivity |
|----------------|------------|-----------|-----------|-------------|--------------|
|                | (Ohm)      | (m)       | (m)       | $(m^2)$     | $(S.m^{-1})$ |
| TS             | 1400000    | 0.087     | 0.0054    | 0.000113097 | 3.41 E-05    |
| $TS_{1}^{IL}$  | 879000     | 0.0831    | 0.0015    | 0.000113097 | 1.50 E-05    |
| $TS_{3}^{IL}$  | 128000     | 0.0858    | 0.0042    | 0.000113097 | 2.9 E-04     |
| $TS_{6}^{IL}$  | 1450       | 0.0862    | 0.0046    | 0.000113097 | 0.028        |
| $TS_{12}^{IL}$ | 88         | 0.0848    | 0.0032    | 0.000113097 | 0.322        |
| $TMOS_1^{IL}$  | 85         | 0.0852    | 0.0036    | 0.000113097 | 0.374        |

**Table S2**: Data calculated based on Nyquist plots fitting using adapted equivalent circuits.