# Molecular Engineering of Organic Small Molecular Photothermal agents by Changing donor group for Photothermal Therapy and Photoacoustic Imaging of tumor

Guowei Deng<sup>a, b</sup>, Hongyu Chen<sup>b</sup>, Jiexue Wang<sup>a</sup>, Kexiang Chen<sup>c</sup>, Lu Li<sup>c</sup>, Shilu Zhang<sup>b</sup>, Kang Sun <sup>a</sup>, Zhonghui Li<sup>a, \*</sup>, Jun Liu<sup>b, \*</sup>

<sup>a</sup> College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China.
<sup>b</sup> School of pharmacy, Thyriod and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Sichuan, China.
<sup>c</sup> College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.

Corresponding authors. E mail: zhonghli@sohu.com(Z. Li); ustbliujun@iccas.ac.cn(J. Liu)

### **Experimental Procedures**

### **General Information**

All chemical reagents were purchased from Beijing InnoChem Science & Technology Co (Beijing, China) and used without further purification. Electron acceptor Ph-CF<sub>3</sub>-TCF was prepare according to the reported literature <sup>1</sup>. Absorption spectra were recorded on a Hitachi UV-3010 (Hitachi, Tokyo, Japan). <sup>1</sup>H NMR spectra were obtained on BrukerAvance III 400 H (400 MHz) spectrometers (Bruker, Karlsruhe, Germany). The HRMS spectra were analyzed on the Q-Exactive instrument. Zetasizer 90 (Malvern, U.K.) was selected to measure the size of the nanoparticles. We used the optical power density meter (LP-3C50, CHINA) to calibrate the output power density to 0.6 W cm<sup>-2</sup>). A thermal imaging camera (226s, FOTRIC, CHINA) were used to record the temperature rise process. Photoacoustic imaging was performed on multimode photoacoustic imaging system for small animals (Vevo LAZR-X, Fujifilim viualsonic, Canada).

#### Synthetic details of PTA 1



Scheme S1. The synthetic route to compound PTA 1.

#### Synthesis of Compound 2

To a solution of 7-nitro-1,2,3,4-tetrahydroquinoline(5g, 28mmol) in 20 mL EtOH, FeCl<sub>3</sub> (100mg) and activated carbon (1g) were added. The mixture was heated to reflux, and 5mL of hydrazine hydrate was added dropwise. The reaction mixture was stirred under reflux for another 3h. After cooled to the room temperature, the activated carbon was filtrated, and the filtrate was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent, the crude product **1** was obtained as colorless oil. Without further purification, the crude product 1, 1-bromopropane (17.8g, 100mmol) and K<sub>2</sub>CO<sub>3</sub>(13.8g, 100mmol) were dissolved in 30 mL acetonitrile. The obtained mixture was stirred under reflux overnight. The inorganic salt was removed through filtration, and the filtrate was concentrated. Finally, the concentrated crude product was purified through column chromatography using hexane as the eluent. Compound **2** was obtained as colorless oil (5.38g, total yield: 70%). HRMS: m/z calcd for [M+H]<sup>+</sup>C<sub>18</sub>H<sub>31</sub>N<sub>2</sub>: 275.2482; found: 275.2482. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  6.72 (d, *J* = 8.2 Hz, 1H), 5.92 (dd, *J* = 8.2, 2.4 Hz, 1H), 5.86 (d, *J* = 2.4 Hz, 1H), 3.27 (t, *J* = 5.6 Hz, 2H), 3.23 – 3.17 (m, 6H), 2.64 (t, *J* = 6.3 Hz, 2H), 1.97 – 1.85 (m, 2H), 1.62 (m, 7.4 Hz, 6H), 0.97 (t, *J* = 7.3 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  147.79, 145.89, 129.30, 110.19, 100.25, 95.16, 53.51, 49.81, 27.20, 22.99, 20.67, 19.52, 11.37, 11.26.

#### Synthesis of Compound 3

Compound 2 (3g, 11mmol) was dissolved in 10 mL DMF. After cooled to 0 °C, 1.2 mL POCl<sub>3</sub> was added to the solution dropwise. The reaction mixture was stirred at 0 °C for another 3h, and then poured into 100 mL 1M K<sub>2</sub>CO<sub>3</sub> aqueous solution, extracted by ethyl acetate. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent, the crude product was purified by column chromatography (hexane: ethyl acetate =10:1), and compound 3 was obtained as yellow oil (2.5g, yield: 75.5%). HRMS: m/z calcd for [M+H]<sup>+</sup> C<sub>19</sub>H<sub>31</sub>N<sub>2</sub>O: 303.2431; found: 303.2431. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  10.08 (s, 1H), 7.40 (s, 1H), 6.21 (s, 1H), 3.38(t, *J* = 4.4 Hz, 2H), 3.29 (t, *J* = 7.6 Hz, 2H), 3.06 (t, *J* = 7.2 Hz, 4H), 2.72 (t, *J* = 6.2 Hz, 1H), 1.99 – 1.87 (m, 2H), 1.71-1.64 (m, 2H), 1.58 – 1.46 (m, 4H), 0.99 (t, *J* = 7.4 Hz, 3H), 0.88 (t, *J* = 7.4 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  188.85, 156.08, 150.38, 128.87, 119.27, 117.06, 101.77, 57.09, 53.05, 49.79, 27.37, 21.89, 20.37, 19.67, 11.46, 11.29.

#### Synthesis of Compound 4

To a solution of compound 3 (1g, 3.3mmol) and triphenyl(2-thienylmethyl)phosphonium bromide (1.7 g, 3.87 mmol) in dry THF, and NaH (100mg, 4.16mmol) was added slowly. The reaction mixture was stirred at room temperature overnight. And then, the reaction mixture was poured into 100 mL H<sub>2</sub>O, extracted by ethyl acetate, and the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of solvent, the crude product was purified by column chromatography using hexane as eluent, and compound 4 was obtained as oil(0.88g, yield: 70%). HRMS: m/z calcd for  $[M+H]^+C_{24}H_{35}N_2S$ : 383.2515; found: 383.2513. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.42 (d, *J* = 16.4 Hz, 1H), 7.22 (s, 1H), 7.13 (d, *J* = 5.0 Hz, 1H), 7.04 – 6.96 (m, 3H), 6.34 (s, 1H), 3.33 (t, *J* = 5.6 Hz, 2H), 3.25 (t, *J* = 7.2 Hz, 2H), 2.92 (t, *J* = 4.8 Hz, 4H), 2.77 (t, *J* = 6.3 Hz, 2H), 2.02 – 1.91 (m, 2H), 1.68-1.60 (m, 2H), 1.58 – 1.44 (m, 4H), 0.99 (t, *J* = 7.4 Hz, 3H), 0.92 (t, *J* = 7.4 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  149.48, 145.42, 145.34, 127.40, 126.40, 125.93, 123.66, 122.26, 120.53, 117.93, 115.75, 104.01, 56.47, 53.11, 49.53, 27.75, 22.47, 20.56, 19.52, 11.64, 11.41.

#### Synthesis of Compound 5

Compound 5 (0.8g, 2.09mmol) was dissolved in 10 mL dry THF, and cooled down to -78°C. n-BuLi (3 mmol) was added dropwise under the protection of N<sub>2</sub>. Keep the temperature and stirred for 2h, DMF (0.5g, 6.85mmol) was added, and the mixture was reacted for another 2h. Next, the reaction was quenched by H<sub>2</sub>O and extracted by ethyl acetate, and the organic phase was dried over Na<sub>2</sub>SO<sub>4</sub>. Finally, the solvent was removed, and compound 5 was obtained as a Z/E mixture (1:1) through column chromatography (hexane: ethyl acetate =10:1). (0.63g, yield: 73%). HRMS: m/z calcd for  $[M+H]^+ C_{25}H_{35}N_2OS:411.2465$ ; found: 411.2464. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  9.80 (s, 0.5H), 9.79 (s, 0.5H), 7.71 (d, *J* = 16.2 Hz, 0.5H), 7.67 (d, *J* = 3.9 Hz, 0.5H), 7.60 (d, *J* = 4.0 Hz, 0.5H), 7.59 (t, *J* = 4.2 Hz, 0.5H), 7.03 (d, *J* = 16 Hz, 0.5H), 7.25 (s, 1H), 6.79 (d, *J* = 11.5 Hz, 0.5H), 6.50 (d, *J* = 11.8 Hz, 0.5H), 6.32 (s, 0.5H), 6.25 (s, 0.5H), 4.35 - 4.23 (m, 2H), 3.39 - 3.21 (m, 4H), 3.02 - 2.89 (m, 4H), 2.02 - 1.88 (m, 2H), 1.71 - 1.62 (m, 2H), 1.56 - 1.42 (m, 4H), 1.04 - 0.77 (m, 9H).

#### Synthesis of PTA 1

Compound 5(100mg, 0.244mmol) and  $CF_3$ -Ph-TCF (100mg, 0.318mmol) was dissolved in 5 mL ethanol, and the reaction mixture was stirred under refluxing. Finally, the solvent was removed, and the

crude product was purified through column chromatography (hexane: ethyl acetate =5:1). The target compound PTA 1 was obtained as dark green powder (69mg, yield: 40%). HRMS: m/z calcd for  $[M+H]^+$  C<sub>41</sub>H<sub>41</sub>F<sub>3</sub>N<sub>5</sub>OS: 708.2978; found: 708.2980. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.79 (d, *J* = 11.5 Hz, 1H), 7.75 (d, *J* = 15.0 Hz, 1H), 7.63 – 7.55 (m, 5H), 7.37 (d, *J* = 4.3 Hz, 1H), 7.27 (s, 1H), 7.06 (s, 1H), 7.03 (d, *J* = 11.5 Hz, 1H), 6.60 (d, *J* = 15.0 Hz, 1H), 6.30 (s, 1H), 3.44 – 3.35 (m, 2H), 3.34 – 3.27 (m, 2H), 3.02 – 2.93 (m, 4H), 2.75 (t, *J* = 6.1 Hz, 2H), 2.03 – 1.91 (m, 2H), 1.67 (td, *J* = 14.9, 7.4 Hz, 2H), 1.52 (dt, *J* = 14.7, 7.3 Hz, 4H), 0.99 (t, *J* = 7.4 Hz, 3H), 0.90 (t, *J* = 7.4 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  175.70, 161.15, 160.62, 152.70, 148.04, 141.32, 140.60, 137.65, 135.15, 131.37, 130.04, 129.66, 127.37, 127.32, 126.86, 126.85, 119.32, 118.74, 114.24, 111.60, 111.45, 111.30, 110.80, 103.76, 56.76, 49.81, 29.68, 27.64, 22.05, 20.51, 19.80, 11.55, 11.29.



Synthetic details of PTA 2

Scheme S2. The synthetic route to compound PTA 2.

#### Synthesis of Compound 6

7-hydroxy-3,4-dihydroquinolin-2(1H)-one (3.26g, 20mmol), 3-bromo-1-propanol (4.17g, 30mmol) and K<sub>2</sub>CO<sub>3</sub>(4.14g, 30mmol) were added into 20mL DMF. The reaction mixture was stirred at 90 °C overnight. Next, the reaction mixture was poured into 200 mL H<sub>2</sub>O, and the precipitate was filtered. The filter cake was dried, and used directly for the next step without further purification. HRMS: m/z calcd for  $[M+H]^+C_{12}H_{16}NO_3$ : 222.1125; found: 222.1123. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.10 (d, *J* = 8.3 Hz, 1H), 6.56 (dd, *J* = 8.3, 2.4 Hz, 1H), 6.34 (d, *J* = 2.4 Hz, 1H), 4.10 (t, *J* = 6.1 Hz, 2H), 3.83 (t, *J* = 5.9 Hz, 2H), 2.92 (t, *J* = 6.8 Hz, 2H), 2.60 (t, *J* = 7.2Hz, 2H), 2.06 – 1.99 (m, 2H).

#### Synthesis of Compound 7

Compound 6 (2.21g, 10mmol) was dissolved in 10 mL dry THF, and then LiAlH<sub>4</sub>(0.4g, 10.5mmol) was added slowly. The reaction mixture was stirred at room temperature for another 3h. And then, the reaction mixture was poured into H<sub>2</sub>O slowly, extracted by ethyl acetate, dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent, the crude product was purified by column chromatography (hexane: ethyl acetate =2:1), and compound 7 was obtained as colorless oil(1.8g, yield: 87%). HRMS: m/z calcd for [M+H]<sup>+</sup> C<sub>12</sub>H<sub>18</sub>NO<sub>2</sub>: 208.1332; found: 208.1333. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  6.83 (d, *J* = 8.2 Hz, 1H), 6.18 (dd, *J* = 8.2, 2.5 Hz, 1H), 6.05 (d, *J* = 2.5 Hz, 1H), 4.04 (t, *J* = 6.0 Hz, 2H), 3.81 (t, *J* = 6.0 Hz, 2H), 3.30 – 3.27 (m, 2H), 2.70 (t, *J* = 6.4 Hz, 2H), 2.03 – 1.95 (m, 2H), 1.95 – 1.86 (m, 2H), 1.30 (s, 1H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  157.98, 145.71, 129.89, 114.16, 103.14, 99.75, 65.66, 60.38, 41.83, 32.16, 26.24, 22.43.

#### Synthesis of Compound 8

To a solution of compound 7(2g, 9.66mmol), 1-bromopropane (2.36g, 19.3mmol) and K<sub>2</sub>CO<sub>3</sub>(6g, 43.5mmol) in 10 mL acetonitrile, and the reaction mixture was stirred under reflux for 6h. The inorganic salt was removed through filtration, and the filtrate was concentrated. Finally, the concentrated crude product was purified through column chromatography (hexane: ethyl acetate =4:1). Compound 8 was obtained as oil (1.7g, yield: 70.5%). HRMS: m/z calcd for  $[M+H]^+$  C<sub>15</sub>H<sub>24</sub>NO<sub>2</sub>: 250.1802; found: 250.1791. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  6.81 (d, *J* = 7.9 Hz, 1H), 6.12 (dd, *J* = 4.8, 2.3 Hz, 1H), 6.09 (d, *J* = 2.4 Hz, 1H), 4.07 (t, *J* = 6.0 Hz, 2H), 3.83 (t, *J* = 6.0 Hz, 2H), 3.30 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, *J* = 6.3 Hz, 1H), 4.07 (t, *J* = 6.0 Hz, 2H), 3.83 (t, *J* = 6.0 Hz, 2H), 3.30 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, *J* = 6.3 Hz, 1H), 4.07 (t, *J* = 6.0 Hz, 2H), 3.83 (t, *J* = 6.0 Hz, 2H), 3.30 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, *J* = 6.3 Hz, 2H), 3.80 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, *J* = 6.3 Hz, 2H), 3.80 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, *J* = 6.3 Hz, 2H), 3.80 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, *J* = 6.3 Hz, 2H), 3.80 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, *J* = 6.3 Hz, 2H), 3.80 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, *J* = 6.3 Hz, 2H), 3.80 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, *J* = 6.3 Hz, 2H), 3.80 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, *J* = 6.3 Hz, 2H), 3.80 – 3.26 (m, 2H), 3.22 – 3.17 (m, 2H), 2.68 (t, J = 6.3 Hz, 2H), 3.80 – 3.26 (m, 2H), 3.20 – 3.17 (m, 2H), 3.80 – 3.26 (m, 2H), 3.20 – 3.17 (m, 2H), 3.80 – 3.26 (m, 2H), 3.20 – 3.17 (m, 2H), 3.80 – 3.26 (m, 2H), 3.20 – 3.17 (m, 2H), 3.80 – 3.26 (m, 2H), 3.20 – 3.17 (m, 2H), 3.80 – 3.26 (m, 2H), 3.20 – 3.17 (m, 2H), 3.80 – 3.26 (m, 2H), 3.20 – 3.17 (m, 2H), 3.80 – 3.26 (m, 2H), 3.20 – 3.17 (m, 2H), 3.80 – 3.26 (m, 2H), 3.20 – 3.17 (m, 2H), 3.20 – 3.26 (m, 2H), 3.20 – 3.26

Hz, 2H), 2.00 (p, *J* = 6.0 Hz, 2H), 1.91 (tt, *J* = 14.1, 5.7 Hz, 2H), 1.69 – 1.57 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 158.42, 146.27, 129.23, 115.27, 100.14, 97.57, 65.70, 60.48, 49.31, 32.23, 27.43, 22.49, 19.35, 11.28.

#### Synthesis of Compound 9

To a solution of compound 8 (2g, 8mmol), acetyl chloride (0.7g, 8.9mmol) and 2mL Et<sub>3</sub>N in 10 mL dry CH<sub>2</sub>Cl<sub>2</sub>, and the solution was stirred at room temperature for 5h. Then, the reaction solution was poured into H<sub>2</sub>O, extracted with CH<sub>2</sub>Cl<sub>2</sub>, and dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent, the crude product was purified by column chromatography (hexane: ethyl acetate =5:1), and compound 9 was obtained as oil (2g, yield: 85.8%). HRMS: m/z calcd for [M+H]<sup>+</sup> C<sub>17</sub>H<sub>26</sub>NO<sub>3</sub>: 292.1907; found: 292.1900. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  6.82 (d, *J* = 8.0 Hz, 1H), 6.13 (d, *J* = 2.3 Hz, 1H), 6.10 (dd, *J* = 8.0, 2.4 Hz, 1H), 4.26 (t, *J* = 6.4 Hz, 2H), 4.02 (t, *J* = 6.2 Hz, 2H), 3.31 – 3.27 (m, 2H), 3.23 – 3.18 (m, 2H), 2.69 (t, *J* = 6.3 Hz, 2H), 2.11 (dd, *J* = 12.6, 6.3 Hz, 2H), 2.07 (s, 3H), 1.97 – 1.88 (m, 2H), 1.69 – 1.59 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  170.80, 158.45, 146.29, 129.23, 115.26, 100.10, 97.69, 64.22, 61.35, 49.33, 28.77, 27.44, 22.52, 20.69, 19.36, 11.29.

#### Synthesis of Compound 10

Compound 9 (2g, 6.86mmol) was dissolved in 10 mL dry DMF. After cool down to 0 °C, POCl<sub>3</sub> (1.2g, 7.8 mmol) was added to the solution slowly. The reaction was stirred at room temperature for 2h, and room temperature for another 12h. The reaction mixture was poured into 50 mL 100 mL 1M K<sub>2</sub>CO<sub>3</sub> aqueous solution, extracted by ethyl acetate. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent, the crude product was purified by column chromatography (hexane: ethyl acetate =2:1), and compound 10 was obtained as yellow oil (1.5g, yield: 75%). HRMS: m/z calcd for [M+H]<sup>+</sup> C<sub>18</sub>H<sub>26</sub>NO<sub>4</sub>: 320.1856; found: 292.1852. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  10.11 (s, 1H), 7.38 (s, 1H), 6.01 (s, 1H), 4.29 (t, *J* = 6.3 Hz, 2H), 4.13 (t, *J* = 6.1 Hz, 2H), 3.41 – 3.37 (m, 2H), 3.35 – 3.30 (m, 2H), 2.73 – 2.67 (m, 2H), 2.18 (p, *J* = 6.2 Hz, 2H), 2.07 (s, 3H), 1.93 (dt, *J* = 11.5, 6.0 Hz, 2H), 1.78 – 1.65 (m, 2H), 1.01 (t, *J* = 8.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  186.05, 170.77, 162.27, 151.66, 128.04, 115.12, 113.65, 92.49, 64.83, 61.16, 49.84, 28.61, 27.13, 21.82, 20.68, 19.67, 11.28.

Synthesis of Compound11

Compound 10 (1.5g, 4.7mmol) was dissolved in a mixture of THF/H<sub>2</sub>O(v/v=1:1), and NaOH(0.25g, 6.25mmol) was added. The reaction mixture was stirred at 40 °C for 6h. The reaction mixture was extracted by ethyl acetate, dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent, the crude product was purified by column chromatography (hexane: ethyl acetate =3:1), and compound 11 was obtained as yellow powder (0.95 g, yield: 73%). HRMS: m/z calcd for  $[M+H]^+ C_{16}H_{24}NO_3$ : 278.1751; found: 278.1743. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  9.88 (s, 1H), 7.29 (s, 1H), 6.03 (s, 1H), 4.18 (t, *J* = 4.7 Hz, 2H), 3.84 (s, 2H), 3.39 (s, 2H), 3.32 (t, *J* = 6.7 Hz, 2H), 2.70 (s, 2H), 2.16 – 2.00 (m, 2H), 1.93 (s, 2H), 1.70 (dd, *J* = 13.8, 6.8 Hz, 2H), 1.00 (t, *J* = 6.5 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  186.83, 161.70, 151.69, 130.87, 114.76, 113.43, 92.58, 66.37, 60.05, 49.83, 32.12, 27.08, 21.78, 19.68, 11.26.

#### Synthesis of Compound 12

To a solution of compound 11 (0.8g, 2.9mmol) and triphenyl(2-thienylmethyl)phosphonium bromide (1.6 g, 3.6 mmol) in dry THF, and NaH (200mg, 8.32mmol) was added slowly. The reaction mixture was stirred at room temperature overnight. And then, the reaction mixture was poured into 100 mL H<sub>2</sub>O, extracted by ethyl acetate, and the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of solvent, the crude product was purified by column chromatography (hexane: ethyl acetate =3:1),, and compound 12 was obtained as oil (0.6g, yield: 57.8%). HRMS: m/z calcd for  $[M+H]^+ C_{21}H_{28}NO_2S$ : 358.1835; found: 358.1830. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.15 (d, *J* = 16.2 Hz, 1H), 7.12 (d, *J* = 7.1 Hz, 1H), 7.11 (s, 1H), 7.07 (d, *J* = 16.2 Hz, 1H), 7.00 (d, *J* = 3.5 Hz, 1H), 6.98 (dd, *J* = 2.8, 1.9 Hz, 1H), 6.15 (s, 1H), 4.15 (t, *J* = 6.0 Hz, 2H), 3.91 (t, *J* = 6.0 Hz, 2H), 3.35 – 3.31 (m, 2H), 3.29 – 3.24 (m, 2H), 2.73 (t, *J* = 6.3 Hz, 2H), 2.11 (p, *J* = 6.0 Hz, 2H), 2.01 – 1.90 (m, 4H), 1.68 (dq, *J* = 14.8, 7.4 Hz, 2H), 1.00 (t, *J* = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  156.15, 146.13, 144.96, 127.42, 126.78, 123.82, 123.76, 122.39, 116.73, 115.17, 112.93, 95.28, 66.23, 60.11, 49.49, 32.38, 27.44, 22.40, 19.66, 11.36.

#### Synthesis of Compound 13

Compound 12 (0.5g, 1.4mmol) was dissolved in 10 mL dry THF, and cooled down to  $-78^{\circ}$ C. n-BuLi (3 mmol) was added dropwise under the protection of N<sub>2</sub>. Keep the temperature and stirred for 2h, DMF (0.3g, 4.11mmol) was added, and the mixture was reacted for another 2h. Next, the reaction was quenched by H<sub>2</sub>O and extracted by ethyl acetate, and the organic phase was dried over Na<sub>2</sub>SO<sub>4</sub>. Finally, the solvent

was removed, and compound 13 was obtained through column chromatography (hexane: ethyl acetate =2:1) as yellow oil (0.35g, yield: 64.8%). HRMS: m/z calcd for  $[M+H]^+ C_{22}H_{28}NO_3S$ : 386.1784; found: 386.1780. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  9.79 (s, 1H), 7.66 (d, *J* = 4.0 Hz, 1H), 7.43 (d, *J* = 16.1 Hz, 1H), 7.14 (s, 1H), 7.07 (d, *J* = 14.8 Hz, 1H), 7.05 (d, *J* = 2.7 Hz, 1H), 6.13 (s, 1H), 4.16 (t, *J* = 6.0 Hz, 2H), 3.92 (t, *J* = 6.0 Hz, 2H), 3.38 – 3.32 (m, 2H), 3.30 – 3.26 (m, 2H), 2.72 (t, *J* = 6.2 Hz, 2H), 2.10 (m, 2H), 1.95 (dd, *J* = 15.1, 8.8 Hz, 2H), 1.67 (dt, *J* = 14.7, 7.4 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  182.11, 157.10, 155.47, 147.28, 139.46, 137.94, 128.83, 127.44, 124.38, 115.22, 115.06, 111.75, 94.51, 65.78, 59.86, 49.57, 32.29, 27.39, 22.22, 19.69, 11.35.

#### Synthesis of PTA 2

Compound 13 (100mg, 0.259mmol) and CF<sub>3</sub>-Ph-TCF (100mg, 0.318mmol) was dissolved in 5 mL ethanol, and the reaction mixture was stirred under refluxing. Finally, the solvent was removed, and the crude product was purified through column chromatography (hexane: ethyl acetate =1:1). The target compound PTA 2 was obtained as dark green powder (50mg, yield: 28%). HRMS: m/z calcd for [M]<sup>+</sup>  $C_{38}H_{33}F_{3}N_4O_3S$ : 682.2225; found: 682.2203. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.75 (d, *J* = 14.9 Hz, 1H), 7.64 – 7.56 (m, 5H), 7.53 (d, *J* = 15.7 Hz, 1H), 7.35 (d, *J* = 4.3 Hz, 1H), 7.13 (d, *J* = 15.5 Hz, 1H), 7.11(s, 1H), 7.05 (d, *J* = 4.3 Hz, 1H), 6.59 (d, *J* = 15.0 Hz, 1H), 6.12 (s, 1H), 4.20 (t, *J* = 6.1 Hz, 2H), 3.92 (t, *J* = 6.0 Hz, 2H), 3.44 – 3.37 (m, 2H), 3.36 – 3.28 (m, 2H), 2.71 (t, *J* = 6.2 Hz, 2H), 2.18 – 2.08 (m, 2H), 2.01 – 1.88 (m, 2H), 1.71 (dt, *J* = 21.2, 6.9 Hz, 2H), 1.01 (t, *J* = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  175.66, 161.08, 160.37, 158.59, 148.96, 141.25, 140.59, 137.73, 132.96, 131.39, 130.02, 129.67, 128.56, 127.29, 126.87, 116.04, 115.06, 112.32, 111.59, 111.48, 111.30, 110.84, 94.04, 65.68, 59.68, 49.85, 32.20, 29.68, 27.31, 22.01, 19.85, 11.30.

#### Synthetic details of PTA 3



Scheme S3. The synthetic route to compound PTA 3.

The synthesis of PTA 3 is similar to the previously reported literature <sup>2, 3</sup>. Phenyl-vinylene-thiophene aldehyde 14 and CF<sub>3</sub>-Ph-TCF were reacted in ethanol and purified through column chromatography (hexane: ethyl acetate =3:1). HRMS: m/z calcd for [M+Na]<sup>+</sup> C<sub>58</sub>H<sub>57</sub>F<sub>3</sub>N<sub>4</sub>NaO<sub>3</sub>SSi: 997.3765; found: 997.3776. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.76 (d, *J* = 15.1 Hz, 1H), 7.67 (d, *J* = 7.2 Hz, 4H), 7.54 (s, 5H), 7.48 – 7.32 (m, 8H), 7.30 (d, *J* = 3.7 Hz, 1H), 7.06 (d, *J* = 16.5 Hz, 1H), 7.04 (s, 1H), 6.57 (d, *J* = 14.9 Hz, 1H), 4.02 (t, *J* = 6.8 Hz, 2H), 3.91 (t, *J* = 5.6 Hz, 2H), 3.32 (s, 2H), 3.25 (s, 2H), 2.27 – 2.14 (m, 2H), 1.77-1.74 (m, 4H), 1.45 (s, 6H), 1.32 (s, 6H), 1.00 (s, 9H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  175.63, 161.45, 159.11, 157.90, 145.33, 141.48, 140.20, 137.82, 135.46, 133.67, 133.18, 131.35, 129.77, 129.68, 129.61, 127.62, 127.26, 127.16, 126.77, 123.50, 122.41, 116.27, 115.19, 111.43, 111.25, 111.15, 111.11, 73.51, 60.78, 57.08, 47.39, 46.82, 39.58, 35.94, 33.08, 32.56, 32.10, 30.31, 29.76, 26.49, 18.94.

#### Fabrication of PTA-1-cRGD, PTA-2-cRGD and PTA-3-cRGD

First, a solution of 0.5umol PTA 1 (PTA 2 or PTA 3), DSPE-PEG2000 (0.5 mg), and DSPE-PEG2000 maleimide (0.5 mg) in acetone (1 mL) was injected into 10 mL of water. A microtip probe sonicator (12 W) was subsequently applied for 2 minutes to vigorously disperse the organic phase in water. The mixture was stirred in fume hood for two days and was further filtered through a membrane filter (diameter = 200 nm). Subsequently, a solution of c-RGD (0.5 mg) in water (about 1 mL) was added into the dot suspension to further react for 12 h. After the dot suspension was dialyzed against water for two days

#### The calculation of PTCE, $\eta$

The photothermal conversion efficiency,  $\eta$ , temperature changes during a cycle of laser-caused heating and cooling of the PTA—1-cRGD, PTA-2-cRGD and PTA-3-cRGD water solution were measured.  $\eta$  was calculated following the eq 1:

$$\eta = \frac{hS(T_{\text{max}} - T_{\text{amb}}) - Q_0}{I(1 - 10^{-A})}$$
(1)

where h corresponds to the heat transfer coefficient and S is the lateral surface area of the PTA-cRGD-1, PTA-cRGD-2 and PTA-cRGD-3 solution in the quartz cuvette.  $T_{max}$  is the maximum temperature of their solution during the lasercaused heating and  $T_{amb}$  is the ambient temperature. A is optical density of these solution at a wavelength of 808 nm.  $Q_0$  is the loss of heat from the light absorbed by the solvent and quartz cuvette and I is the laser power density (0.6W/cm<sup>2</sup>). The value of hS is obtained according to eq 2

$$\tau_{\rm s} = \frac{m_{\rm D}c_{\rm D}}{hS} \tag{2}$$

where  $m_D$  is the mass (1.0 g) and  $c_D$  is the heat capacity (4.2 J g<sup>-1</sup>) of the deionized water.  $\tau_s$  means the sample system time constant.

#### **Tumor Model**

Nude mice 6–7 weeks old were provided by the Laboratory Animal Center of North Sichuan Medical College, Nanchong, China. All procedures involving animals were performed according to a protocol approved by the Institutional Animal Care and Treatment Committee of North Sichuan Medical College. These nude mice were subcutaneously injected with  $1 \times 10^6$  SKOV-3 cells in the right axillary under aseptic conditions. Then, they were individually housed under specific pathogenfree conditions with free access to food and water until the formed tumor grew to approximately 1 cm in diameter by measuring with a caliper; tumor growth to this size took about a month. These tumor-bearing mice were further used to conduct photothermal experiments.

### **Results and Discussion**



Figure S1. UV absorption spectra of 5uM (a)PTA 1, (b) PTA 2 and (c) PTA 3 in various solvents.



**Figure S2.** The ROS ability in the presence or absence of each probe via fluorescence enhancement at 525 nm referred to  $H_2DCF$ -DA under 808nm laser (0.6 W/cm<sup>2</sup>). Test according to the method reported

in the literature.<sup>[16]</sup>



**Figure S3**. Size distribution of (a)PTA-1-cRGD, (b) PTA-2-cRGD and (c) PTA-3-cRGD measured by DLS in water . TEM image of (c)PTA-1-cRGD, (d) PTA-2-cRGD and (f) PTA-3-cRGD.

| PTT agents    | Organic dyes                                      | $\lambda_{max}$ (nm) after being loaded | PTCE               | Reference |
|---------------|---------------------------------------------------|-----------------------------------------|--------------------|-----------|
| FTC NPs       | NC<br>NC<br>S<br>VC<br>CN                         | 635                                     | 52.71% (6<br>35nm) | 4         |
| DPP-TPA NPs   |                                                   | 660                                     | 34.5% (66<br>0nm)  | 5         |
| RC-BSA NPs    |                                                   | 868                                     | 28.7% (91<br>5nm)  | 6         |
| FA-INPs       | <sup>O</sup> 3S<br>Na <sup>+</sup>                | 787                                     | 17.3% (80<br>8nm)  | 7         |
| NIRb14 NPs    | $() \\ () \\ () \\ () \\ () \\ () \\ () \\ () \\$ | 822                                     | 31.2% (80<br>8nm)  | 8         |
| A1-NPs        |                                                   |                                         | 35.0% (80<br>8nm)  | 9         |
| SQ1 Nanoprobe |                                                   | 940                                     | 25.6% (91<br>5nm)  | 10        |

### **Table S1** Summary of the organic photothermal small molecule dyes





**Figure S4.** (a) Concentration-dependent temperature variation of PTA- 1 -cRGD with 808 nm (0.6 W cm<sup>-2</sup>) laser irradiation; (b) IR image of PTA- 1 -cRGD solution with different concentration under laser irradiation; (c) Temperature variations of PTA- 1 -cRGD water solution (100  $\mu$ g /mL) using laser irradiation for five cycles.; (d) Plot of cooling time (10 min) and the negative natural logarithm of the temperature driving force.



**Figure S5.** (a) Concentration-dependent temperature variation of PTA-3-cRGD with 808 nm (0.6 W cm<sup>-2</sup>) laser irradiation; (b) IR image of PTA-3-cRGD solution with different concentration under laser irradiation; (c) Temperature variations of PTA-3-cRGD water solution (100  $\mu$ g /mL) using laser irradiation for five cycles.; (d) Plot of cooling time (10 min) and the negative natural logarithm of the temperature driving force.



Figure S6. The change of relative absorption value at their maximum absorption wavelength.



Figure S7. Cytotoxicity of PTA-1-cRGD, PTA-2-cRGD and PTA-3-cRGD on various cells determined

by MTT assay.



Figure S8. The changes in body weight of treated mice over time.

Table S2. the p values of (a) Group 1, (b) Group 2, (c) Group 3 and (d) Group 4.







Figure S10. <sup>1</sup>H NMR spectra of PTA-1.



Figure S11. <sup>13</sup>C NMR spectra of PTA-1.



Figure S12. HRMS spectra of PTA-2.



Figure S13. HRMS spectra of PTA-2.



Figure S14. <sup>13</sup>C NMR spectra of PTA-2.



Figure S15. HRMS spectra of PTA-3.



Figure S16. <sup>1</sup>H NMR spectra of PTA-3.



Figure S17. <sup>13</sup>C NMR spectra of PTA-3.

#### References

- 1. S. Liu, M. A. Haller, H. Ma, L. R. Dalton, S. H. Jang and A. K. Y. Jen, Focused microwaveassisted synthesis of 2,5-dihydrofuran derivatives as electron acceptors for highly efficient nonlinear optical chromophores, *Advanced Materials*, 2003, **15**, 603-607.
- F. Liu, H. Xu, H. Zhang, L. Chen, J. Liu, S. Bo, Z. Zhen, X. Liu and L. Qiu, Synthesis of julolidine-containing nonlinear optical chromophores: Achieving excellent electro-optic activity by optimizing the bridges and acceptors, *Dyes and Pigments*, 2016, **134**, 358-367.
- J. Wu, C. Peng, H. Xiao, S. Bo, L. Qiu, Z. Zhen and X. Liu, Donor modification of nonlinear optical chromophores: Synthesis, characterization, and fine-tuning of chromophores' mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest–host electro-optic materials, *Dyes and Pigments*, 2014, **104**, 15-23.
- W. Feng, W. Zhao, Z. Chen, C. Zhang, J. Ge, X. Zheng, H. Ren and S. Bo, Organic Dye Nanoparticles with a Special D-π–A Structure for Photoacoustic Imaging and Photothermal Therapy, ACS Applied Bio Materials, 2020, 3, 5722-5729.
- Y. Cai, P. Liang, Q. Tang, X. Yang, W. Si, W. Huang, Q. Zhang and X. Dong, Diketopyrrolopyrrole–Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic Imaging-Guided Photodynamic/Photothermal Synergistic Tumor Therapy, ACS Nano, 2017, **11**, 1054-1063.

- B. Zhou, Y. Li, G. Niu, M. Lan, Q. Jia and Q. Liang, Near-Infrared Organic Dye-Based Nanoagent for the Photothermal Therapy of Cancer, ACS Applied Materials & Interfaces, 2016, 8, 29899-29905.
- M. Zheng, P. Zhao, Z. Luo, P. Gong, C. Zheng, P. Zhang, C. Yue, D. Gao, Y. Ma and L. Cai, Robust ICG Theranostic Nanoparticles for Folate Targeted Cancer Imaging and Highly Effective Photothermal Therapy, ACS Applied Materials & Interfaces, 2014, 6, 6709-6716.
- S. Liu, X. Zhou, H. Zhang, H. Ou, J. W. Y. Lam, Y. Liu, L. Shi, D. Ding and B. Z. Tang, Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics, *Journal of the American Chemical Society*, 2019, **141**, 5359-5368.
- Y. Xu, T. Feng, T. Yang, H. Wei, H. Yang, G. Li, M. Zhao, S. Liu, W. Huang and Q. Zhao, Utilizing Intramolecular Photoinduced Electron Transfer to Enhance Photothermal Tumor Treatment of Aza-BODIPY-Based Near-Infrared Nanoparticles, ACS Applied Materials & Interfaces, 2018, 10, 16299-16307.
- D. Yao, Y. Wang, R. Zou, K. Bian, P. Liu, S. Shen, W. Yang, B. Zhang and D. Wang, Molecular Engineered Squaraine Nanoprobe for NIR-II/Photoacoustic Imaging and Photothermal Therapy of Metastatic Breast Cancer, ACS Applied Materials & Interfaces, 2020, **12**, 4276-4284.
- R. Zhang, Z. Wang, L. Xu, Y. Xu, Y. Lin, Y. Zhang, Y. Sun and G. Yang, Rational Design of a Multifunctional Molecular Dye with Single Dose and Laser for Efficiency NIR-II Fluorescence/Photoacoustic Imaging Guided Photothermal Therapy, *Analytical Chemistry*, 2019, **91**, 12476-12483.
- T. Zhang, B. Wu, O. U. Akakuru, C. Yao, S. Sun, L. Chen, W. Ren, A. Wu and P. Huang, Hsp90 inhibitor-loaded IR780 micelles for mitochondria-targeted mild-temperature photothermal therapy in xenograft models of human breast cancer, *Cancer Letters*, 2021, 500, 41-50.
- C. Song, J. Ran, Z. Wei, Y. Wang, S. Chen, L. Lin, G. Zhang, Y. Cai and W. Han, Organic Near-Infrared-II Nanophotosensitizer for Safe Cancer Phototheranostics and Improving Immune Microenvironment against Metastatic Tumor, ACS Applied Materials & Interfaces, 2021, 13, 3547-3558.
- H. Xiang, L. Zhao, L. Yu, H. Chen, C. Wei, Y. Chen and Y. Zhao, Self-assembled organic nanomedicine enables ultrastable photo-to-heat converting theranostics in the second near-infrared biowindow, *Nature Communications*, 2021, **12**, 218.

- 15. B. Xu, Z. Wang and W. Zhao, Sphere–like aggregates of porphyrin as phototherapeutic agent for synergistic cancer treatment, *Dyes and Pigments*, 2021, **186**, 108926.
- 16. J. Wang, X. Zhu, J. Zhang, H. Wang, G. Liu, Y. Bu, J. Yu, Y. Tian and H. Zhou, ACS Applied Materials & Interfaces, 2020, **12**, 1988.