Structural diversity in binary superlattices from Au and γ-Fe₂O₃ nanocrystals: towards fine tuning of dipolar interactions

Suyeon Lee¹, Anh-Tu Ngo¹, Isabelle Lisiecki^{1*} and Alexa Courty^{1*}

1-Sorbonne Université, MONARIS, UMR8233, UMR 8233, F-75005 Paris, France

Figure S1. a) TEM image of 4.6 \pm 0.3 nm Au NPs , b) corresponding size distribution and c) contrast profile made over the red line allowing to determine the effective diameter $D_{C-C} \approx 6.4$ nm.

Figure S2. TEM images of γ -Fe₂O₃ NPs of different diameters and contrast profiles made over the red lines, allowing the determination of corresponding effective diameters D_{C-C} : a) $D = 7.9 \pm 0.6 \text{ nm b}$ $D_{c-c} \approx 10 \text{ nm c}$ $D = 11.4 \pm 0.9 \text{ nm d}$ $D_{c-c} \approx 13.4 \text{ nm e}$ $D = 12.4 \pm 1.0 \text{ nm f}$ $D_{c-c} \approx 14.2 \text{ nm}$.

Figure S3: Schemes of preparation methods used for growing ordered binary superlattices.

Table S1 Hildebrand parameters and boiling points of the different solvents used in this study^{29–31}.

Solvent or (ligands)	Hildebrand solubility parameters (MPa ^{0.5})	Dielectric constant	Boiling point (°C)	Evaporation time (hour)
Toluene	18.2	2.38	111	4
Cumene	17.5	2.4	152	5
Hexane	14.9	1.8	68	0.5

Figure S4. TEM images of BNSLs composed of γ -Fe₂O₃ and Au NPs, with different effective size ratios ($^{\chi_{eff}}$), keeping the other conditions unchanged ([γ -Fe₂O₃]/[Au])=1/4, T_d=50°C), $^{\chi_{eff}} = (a) \ 0.45$ (b) 0.48 (c) 0.64. Insets: the FFT analysis performed on selected areas (red squares) of the binary superlattices and BNSL structures corresponding to TEM images.

Figure S5. TEM images of NaZn₁₃ type binary superlattices formed with 7.9nm γ -Fe₂O₃ and 4.6nm Au NPs with fixed effective size ratio ($\gamma_{eff} = 0.64$) and deposition temperature Td=50°C by using different solvents a) toluene and b) cumene. Insets: the FFT analysis performed on selected areas (red squares) of the binary superlattices and representation of unit cell of NaZn₁₃ type binary structure.

Table S2. Interparticle distance D_{C-C} between magnetic NPs (γ -Fe₂O₃ NPs) in thin BNSLs and pure γ -Fe₂O₃ NP assemblies.

	Binary superlattices formed with 7.9 nm γ-Fe ₂ O ₃ and 4.6 nm Au NPs	Pure 7.9 nm γ-Fe ₂ O ₃ NP superlattices	
D _{C-C}	13.8 nm	10 nm	
Crystalline structure	NaZn ₁₃	fcc	

Figure S6. (a) TEM image of thin layers of γ -Fe₂O₃ NPs with their FFT image (inset) and (b) the contrast profile made over the red line, indicating an interparticle distances $D_{C-C}\approx 10$ nm.

Figure S7. (a-c) HR-TEM images of NaZn₁₃ BNSL structure at different magnifications and (d) the contrast profile made over the red line, from (b) indicating an interparticle distances $D_{C-1} \approx 13.8$ nm.

Table S3. Comparison of the blocking temperature and the coercivity values obtained by SQUID measurements for pure γ -Fe₂O₃ superlattices and γ -Fe₂O₃ -Au BNSLs. All values are deduced from Figure 6.

	SQUID			
	Blocking temperature, T _b (K)	Coercivity, H _c (Oe)		
γ -Fe ₂ O ₃ superlattices	84	360		
γ-Fe ₂ O ₃ -Au BNSLs	76	360		