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Experimental section

Characterization

Powder X-ray diffraction (XRD) data were obtained using a Rigaku D-MAX 

2500/PC diffractometer. Fourier transform infrared (FTIR) spectra were recorded on a 

Nicolet 6700 spectrometer with KBr pellet (Thermo scientific, USA). X-ray 

photoelectron spectra (XPS) were recorded using an X-ray photoelectron spectrometer 

(Thermo Scientific, K) equipped with a monochromatic Al K X-ray source (hv = 

1486.6 eV). UV–visible diffuse reflectance spectra were recorded using a Lambda 750 

UV/VIS/NIR spectrometer. The morphology of samples was observed using a JEOL 

7600F scanning electron microscope (SEM). High-resolution transmission electron 

microscopy (HRTEM) images and energy-dispersive X-ray spectroscopy (EDS) 

elemental mapping were obtained using a Tecnai-G2-F30 high-resolution transmission 

electron microscope (FEI Company, USA). Photoluminescence (PL) spectra with an 

excitation wavelength of 529 nm were recorded using a fluorescence spectrophotometer 

(F-4500 FL). The specific surface area and pore structure were confirmed via Brunauer-

Emmett-Teller (BET) method and Barrett-Joyner-Halenda (BJH) on ASAP 2460. The 

electron spin resonance (EPR) experiments were performed by using the Bruker E500 

instrument to detect the carbon vacancy. The solid-state 13C nuclear magnetic resonance 

(NMR) spectra were measured on the Agilent-NMR-vnmrs 600 instrument.

Calculation of the apparent quantum yield (AQY)



The AQY was calculated using the following equation:

𝐴𝑄𝑌 =
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In this equation, nH2 and  is the number of H2 molecules and photons, respectively,

 denotes the light power, determined by CEL-NP2000 power meter; t is the 

illumination time (3600 s);  is the incident light wavelength (420 nm);  represents 

the Planck constant (6.63  10-34 J·s); and  is the light speed (3.0  108 m·s–1).

Electrochemical and photoelectrochemical measurements

The photocurrent measurements, linear sweep voltammetry (LSV), and 

electrochemical impedance spectroscopy (EIS) were recorded using a standard three-

electrode electrochemical analyzer (PEC2000, Beijing). The as-prepared sample coated 

onto an FTO electrode acts as the working electrode; a SCE (saturated calomel 

electrode) acts as the reference electrode; a Pt foil acts as the counter electrode. A 300-

W Xe arc lamp (PLS-SXE300) was used as the light source. A 0.5 M Na2SO4 aqueous 

solution was used as the electrolyte. 

Calculation methods

Gaussian 09 program was employed for DFT calculations. Ground state geometry 

optimization was performed at B3LYP-D3BJ/6-31G(d) level, and frequency 

calculation followed to ensure minimum was located. The DOS is obtained by Gaussian 



broadening of the orbital level with the half width of 0.5 eV, by the Multiwfn program.

Results section



Fig. S1. FTIR spectra of (a) melamine, (b) benzonquanmine, supramolecular self-

assembly of (c) melamine-cyanuric acid, and (d) melamine + benzonquanmine- 

cyanuric acid.

Fig. S2. Schematic illustration of the formed supramolecular self-assembly by 

hydrogen bonds.



Fig. S3. The high-resolution N 1s XPS spectrum of EY-PhCN.

The peaks at 403.5 eV can be attributed to the π excitations.

Fig. S4. (a) N2 adsorption-desorption isotherms for the EY-PhCN and (b) pore size 

distribution.

According to the pore size distribution curve of EY-PhCN, some micropore and 

mesopore were presented on its nanosheets.



Fig. S5. The photographs of (a) CN, (b) PhCN, and (c) EY-PhCN.



Fig. S6. (αhν)1/2 vs radiation energy (hν) plots of CN, PhCN, and EY-PhCN samples.



Fig. S7. XPS valence band spectra of CN, PhCN, and EY-PhCN samples.

Fig. S8. Effect of (a) benzonquanmine and (b) EY amount on H2 evolution activity of 

PhCN.



Fig. S9. XRD patterns of fresh and used EY-PhCN samples.

Fig. S10. IR spectra of fresh and used EY-PhCN samples.



Fig. S11. TEM image of used EY-PhCN sample.

Fig. S12. The baselines of CO2 reduction under various conditions. 



Fig. S13. TEM images of Pt-loaded EY-PhCN.

Fig. S14. (a) Transient photocurrent and (b) EIS curves of PhCN and PhCN500.



Table S1 Proportion of each peak in the C 1s and N 1s spectra of CN, PhCN, and EY-

PhCN samples.

CN PhCN EY-

PhCNXPS fitting peaks

Proportion (%)

C–C/C=C (284.6) 8.37 16.61 28.51
C–NHx (285.8)     2.06 3.36 4.93
N=C–N (288.0) 89.57 80.03 59.62
C−N=C (398.5) 68.77 54.06 50.79
N–(C)3 (399.0) 16.54 28.63 24.04
C–N–H (400.5) 14.69 17.32 19.1

Table S2. The C, H, and N contents in CN-N and Ni/S-CN-N obtained by elemental 

analysis. 

Content/%
Samples

C H N

CN 33.17 1.232 56.81

PhCN 32.83 1.305 56.17

EY-

PhCN

33.09 1.347 55.27



Table S3. Comparison of photocatalytic H2 evolution rates of various modified g-C3N4 photocatalysts.

Photocatalysts rH2     
(μmol g–1 

h–1)

photocatalyst 
(mg)

Reaction 
conditions

Light 
source 
(nm)

AQY References

BP/g-C3N4 384.17 10 10% 
TEOA

λ > 420 1

O-CN 4210 25 1% Pt       
10% 

TEOA

λ > 420 15.7% 2

g-C3N4-acetone 29330 10 2% Pt     
10% 

TEOA

λ > 420 26.2% 3

m-CN-0.067 2500 10 0.5% Pt     
15% 

TEOA

λ > 420 4

Mn1.5–C3N4 695.1 20 0.9% Pt         
10%TEOA

AM1.5 4.0% 5

C3N4-T-CO2 424.7 5 3% Pt         
20% 

TEOA

λ ≥ 420 2.2% 6

CCN-1 529 100 3t% Pt         
10% 

TEOA

λ> 420 7

CCTs 3538.3 50 3% Pt
25% 

methanol

λ> 420 10.9% 8

2AP-CN-15 6317.5 20 3% Pt         
20%TEOA

λ> 420 20.1% 9

Pt SAs/C3N4 11532 50 0.91% Pt 
20 % 

TEOA

AM 
1.5G

10

SA-Cu-TCN 10600 20 1% Pt       
15% 

methanol

λ>  420 9.2% 11

CRed-AT-C3N4 12310 20 3% Pt        
10% 

TEOA

λ> 420 18.5% 12

UCN-BI400 D-
A

5442.74 50 3% Pt
20% 

TEOA

λ > 420 23.3% 13

0.8 wt% ABT- 3638 20 2% Pt λ ≥ 420 0.64% 14



C3N4 10% 
TEOA

Nic-CN 6310 20 1% Pt
10% 

methanol

λ > 420 6.81% 15

Ar-C3N4 10769 50 3% Pt
10% 

TEOA

λ > 420 10.3% 16

g-C3N4-MF100 
D-A

3612.65 50 3% Pt
20% 

TEOA

λ > 420 8.6% 17

EY-PhCN 4443 10 1% Pt   
10% 

TEOA

λ > 420 27.38% this work
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