# **Supporting Information**

# The Novel Dual-Category Active Sites of NiCoP/CoP as Highperformance Electrocatalyst for Urea Electrolysis and Synergistic Hydrogen Production

Borong Lu, Dong Wang, Chunlin Zhao, Kai Zhu, Jun Yan, Guiling Wang, Dianxue Cao, Ke Ye\*

Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of

Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.

<sup>\*</sup> Corresponding author.

E-mail address: yekehrbeu@163.com

#### **Experimental Section**

## **Chemicals and Materials**

All chemical reagents are analytically pure and can be used directly without further purification, including Ni foam (NF), deionized water (H<sub>2</sub>O), potassium hydroxide (KOH), urea (CO(NH<sub>2</sub>)<sub>2</sub>), methyl alcohol (CH<sub>3</sub>OH), nickel nitrate hexahydrate (Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O), 2-methylimidazole (C<sub>4</sub>H<sub>6</sub>N<sub>2</sub>), cobalt nitrate hexahydrate (Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O). In addition, Ni foam (NF) was used after sonication for 15 min in acetone, methanol, and deionized water, respectively. Then, it was cleaned with DI water and absolute ethanol.

#### Synthesis of NiCo-LDH/NF

Typically, Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (0.462 g), Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (0.22 g), and CO(NH<sub>2</sub>)<sub>2</sub> (0.72 g) were dispersed into deionized water (35 mL) and stirred for 30 min. Then, the above solution and pretreated NF (1 cm  $\times$  4 cm) were transferred to a 50 mL Teflon-lined autoclave and heated at 120 °C for 8 h. The autoclave was slowly cooled to room temperature. After washing several times with deionized water and ethanol. The resulting catalyst was dried at 80 °C for 6 h, the drying NiCo-LDH/NF was obtained.

#### Synthesis of NiCo-LDH/ZIF-67

The NiCo-LDH/ZIF-67 was synthesized by a one-step synthesis method at normal temperature. Typically, solution A: 2-methylimidazole (0.8 g), and solution B:  $Co(NO_3)_2 \cdot 6H_2O$  (0.291 g) were dispersed into methyl alcohol (20 mL), respectively. After stirring for 15 min, solutions A and B were mixed for 15 min. Subsequently, the

NiCo-LDH/NF was tilted into the mixture solution and resting for 24 h at room temperature. After washing several times with methyl alcohol. The NiCo-LDH/ZIF-67 was dried at 80 °C for 6 h.

#### Synthesis of CNCP-T (200, 300, 350, 400)

A porcelain boat containing 300 mg of sodium hypophosphite was placed upstream of the tube furnace, and the downstream was NiCo-LDH/ZIF-67. Then the tube furnace was heated at 200, 300, 350, and 400 °C in the argon atmosphere for 2 h with a heating rate of 2 °C min<sup>-1</sup> to synthesize CNCP-200, CNCP-300, CNCP-350, and CNCP-400.

## Synthesis of CoP

As a controlled sample, ZIF-67 was grown directly on bare NF, and then put into a tube furnace and heated in an argon atmosphere at 350°C for 2 h at a heating rate of 2°C min<sup>-1</sup> for synthesis.

# Synthesis of NiCoP

The synthesis process of NiCoP is similar to that of CoP, but using NiCo-LDH in the precursor solution.

# **Physical Characterizations**

X-ray diffraction (XRD) patterns were obtained from a Rigaku TTR III with Cu Kα radiation. Scanning electron microscopy (SEM) images were recorded by a JEOL JSM-6480A. The high-resolution transmission electron microscope (HRTEM) and scanning TEM (STEM)-EDS analysis were acquired from a Tecnai G2 F20 S-TWIN. X-ray photoelectron spectroscopy (XPS) was performed on a Thermo ESCALAB 250.

# **Electrochemical measurements**

The electrochemical measurements were performed on an Ivium electrochemical workstation (Ivium-n-Stat, Holland) with a three-electrode system. The CNCP-T, NiCo-LDH/ZIF-67, and NiCo-LDH as the working electrode, Ag/AgCl (saturated KCl), and graphite rod were used as the reference and counter electrodes, respectively. If not specifically mentioned, UOR tests were carried out in N<sub>2</sub>-saturated 1 M KOH with 0.5 M urea electrolyte, and HER tests were carried out in N<sub>2</sub>-saturated 1 M KOH, respectively. All potentials measured were calculated relative to versus reversible hydrogen electrode (RHE) and calculated using the formula: E(RHE) = E(Ag/AgCl) + 0.197+ 0.0592 pH. The Tafel plots were derived from the Tafel equation  $\eta=blogj+\alpha$  (where  $\eta$  is the overpotential, b is the Tafel slope, j is the current density).



Figure S1. The SEM image of CNCP-350.



**Figure S2.** (a) The LSV curves of CNCP-T in the 1.0 M KOH + 0.5 M urea. (b) Tafel plots of the CNCP-T. (c) The LSV curves of CNCP-350 with different phosphating amounts in the 1.0 M KOH + 0.5 M urea. (d) Tafel plots of the CNCP-350 with different phosphating amounts.



Figure S3. LSV curves of CNCP-350 and NF in 1 M KOH + 0.5 M urea electrolyte.



Figure S4. The LSV curves of NiCoP, CoP, and CNCP-350 in 1.0 M KOH + 0.5 M





**Figure S5.** (a-c) UOR: the CV curve of the NiCo-LDH, NiCo-LDH/ZIF-67 and CNCP-350 (20-100 mV s<sup>-1</sup>).



Figure S6. The chronoamperometric response of CNCP-350 in 1.0 M KOH + 0.5 M urea at 100 mA cm<sup>-2</sup> for 40 h (UOR).



Figure S7. (a-c) HER: the CV curve of the NiCo-LDH, NiCo-LDH/ZIF-67 and CNCP-350 (20-100 mV s<sup>-1</sup>).



Figure S8. The chronoamperometric response of CNCP-350 in 1.0 M KOH + 0.5 M urea at 100 mA cm<sup>-2</sup> for 40 h (HER).



Figure S9. The chronoamperometric response of CNCP-350 in 1.0 M KOH + 0.5 M urea at 100 mA cm<sup>-2</sup> for 40 h (HER||UOR).

| Materials                                         | Electrolyte             | Potential (V) | Current<br>density (mA<br>cm <sup>-2</sup> ) | Reference |
|---------------------------------------------------|-------------------------|---------------|----------------------------------------------|-----------|
| FeNi <sub>3</sub> -MoO <sub>2</sub>               | 1.0 M KOH+0.5<br>M urea | 1.290 V       | 10 mA cm <sup>-2</sup>                       | 1         |
| Ni-NiO-<br>Mo <sub>0.84</sub> Ni <sub>0.16</sub>  | 1.0 M KOH+0.5<br>M urea | 1.330 V       | 50 mA cm <sup>-2</sup>                       | 2         |
| Ni <sub>3</sub> S <sub>2</sub> /Ni                | 1.0 M KOH+0.5<br>M urea | 1.300 V       | 10 mA cm <sup>-2</sup>                       | 3         |
| Ni <sub>3</sub> S <sub>2</sub> –Ni <sub>3</sub> P | 1.0 M KOH+0.5<br>M urea | 1.379 V       | 100 mA cm <sup>-2</sup>                      | 4         |
| C-350                                             | 1.0 M KOH+0.5<br>M urea | 1.337 V       | $10 \text{ mA cm}^{-2}$                      | 5         |
| NiFe(OH) <sub>x</sub> /Ni <sub>3</sub> N          | 1.0 M KOH+1<br>M urea   | 1.360 V       | $10 \text{ mA cm}^{-2}$                      | 6         |
| Ni-S-Se                                           | 1.0 M KOH+0.5<br>M urea | 1.380 V       | 10 mA cm <sup>-2</sup>                       | 7         |
| O-NiMoP                                           | 1.0 M KOH+0.5<br>M urea | 1.410 V       | 100 mA cm <sup>-2</sup>                      | 8         |
| NiCo <sub>2</sub> S <sub>4</sub> NS               | 1.0 M KOH+0.5<br>M urea | 1.272 V       | 10 mA cm <sup>-2</sup>                       | 9         |
| CNCP-350                                          | 1.0 M KOH+0.5<br>M urea | 1.245 V       | $10 \text{ mA cm}^{-2}$                      | This work |

**Table S1.** Comparison of the UOR activity of the CNCP-350 and several recentlyreported catalysts.

**Table S2.** Impedance fitting data of the CNCP-350, NiCo-LDH/ZIF-67 and NiCo-LDH.

| Materials       | $R_{\rm s}(\Omega)$ | $R_{\rm ct}(\Omega)$ |
|-----------------|---------------------|----------------------|
| NiCo-LDH        | 0.625               | 0.667                |
| NiCo-LDH/ZIF-67 | 0.621               | 0.488                |

| С | NCP-350 | 0.619 | 0.393 |
|---|---------|-------|-------|
|   |         |       |       |

| Materials                                                  | Electrolyte | Overpotential<br>(mV) | Current<br>density (mA<br>cm <sup>-2</sup> ) | Reference |
|------------------------------------------------------------|-------------|-----------------------|----------------------------------------------|-----------|
| Ni <sub>3</sub> S <sub>2</sub> -Ni <sub>3</sub> P/NF-<br>2 | 1.0 M KOH   | 122 mV                | 10 mA cm <sup>-2</sup>                       | 4         |
| Ni-S-Se/NF                                                 | 1.0 M KOH   | 98 mV                 | $10 \text{ mA cm}^{-2}$                      | 7         |
| Co-Ni-P-2                                                  | 1.0 M KOH   | 103 mV                | 10 mA cm <sup>-2</sup>                       | 10        |
| Cu@NC NT/CF                                                | 1.0 M KOH   | 123 mV                | $10 \text{ mA cm}^{-2}$                      | 11        |
| Co <sub>z</sub> W <sub>y</sub> S <sub>x</sub>              | 1.0 M KOH   | 189 mV                | $10 \text{ mA cm}^{-2}$                      | 12        |
| NiTe/rGO/NF                                                | 1.0 M KOH   | 170 mV                | 10 mA cm <sup>-2</sup>                       | 13        |
| Co <sub>x</sub> Mo <sub>y</sub> S-CC                       | 1.0 M KOH   | 85 mV                 | $10 \text{ mA cm}^{-2}$                      | 14        |
| MNPBA-P                                                    | 1.0 M KOH   | 134 mV                | $10 \text{ mA cm}^{-2}$                      | 15        |
| Ni <sub>3</sub> N/NF                                       | 1.0 M KOH   | 120 mV                | 10 mA cm <sup>-2</sup>                       | 16        |
| CNCP-350                                                   | 1.0 M KOH   | 65 mV                 | $10 \text{ mA cm}^{-2}$                      | This work |

**Table S3.** Comparison of the HER activity of the CNCP-350 and several recentlyreported catalysts.

**Table S4.** Comparison of the dual-electrode UOR activity of the CNCP-350 and several recently reported catalysts.

| Materials                           | Electrolyte             | Potential (V) | Current<br>density (mA<br>cm <sup>-2</sup> ) | Reference |
|-------------------------------------|-------------------------|---------------|----------------------------------------------|-----------|
| FeNi <sub>3</sub> -MoO <sub>2</sub> | 1.0 M KOH+0.5<br>M urea | 1.370 V       | 10 mA cm <sup>-2</sup>                       | 1         |
| Ni-NiO-                             | 1.0 M KOH+0.5           | 1.370 V       | $10 \text{ mA cm}^{-2}$                      | 2         |

| Mo <sub>0.84</sub> Ni <sub>0.16</sub>             | M urea        |         |                                    |           |
|---------------------------------------------------|---------------|---------|------------------------------------|-----------|
| Ni <sub>3</sub> S <sub>2</sub> /Ni                | 1.0 M KOH+0.5 | 1.360 V | $10 \text{ mA cm}^{-2}$            | 3         |
|                                                   | M urea        |         |                                    |           |
| Ni <sub>3</sub> S <sub>2</sub> -Ni <sub>3</sub> P | 1.0 M KOH+0.5 | 1.430 V | $10 \text{ mA cm}^{-2}$            | 4         |
|                                                   | M urea        |         |                                    |           |
| Ni <sub>3</sub> N                                 | 1.0 M KOH+0.5 | 1.370 V | $10 \text{ mA cm}^{-2}$            | 16        |
|                                                   | M urea        |         |                                    |           |
| MNPBA-P                                           | 1.0 M KOH+1   | 1.500 V | $10 \text{ mA cm}^{-2}$            | 15        |
|                                                   | M urea        |         |                                    |           |
| Ni-S-Se                                           | 1.0 M KOH+0.5 | 1.470 V | $10 \text{ mA cm}^{-2}$            | 7         |
|                                                   | M urea        |         |                                    |           |
| O-NiMoP                                           | 1.0 M KOH+0.5 | 1.360 V | $100 \text{ mA cm}^{-2}$           | 8         |
|                                                   | M urea        |         |                                    |           |
| NiCo <sub>2</sub> S <sub>4</sub> NS               | 1.0 M KOH+0.5 | 1.450 V | $10 \text{ mA cm}^{-2}$            | 9         |
|                                                   | M urea        |         |                                    |           |
| CNCP-350                                          | 1.0 M KOH+0.5 | 1.245 V | $\overline{10 \text{ mA cm}^{-2}}$ | This work |
|                                                   | M urea        |         |                                    |           |

# References

[S1] Q. L. Xu, T. Q. Yu, J. L. Chen, G. F. Qian, H. N. Song, L. Luo, Y. L. Chen, T. Y. Liu, Y. Z. Wang, S. B. Yin, Coupling interface constructions of FeNi<sub>3</sub>-MoO<sub>2</sub> heterostructures for efficient urea oxidation and hydrogen evolution reaction, ACS Appl. Mater. Interfaces., 13 (2021) 16355–16363.

[S2] Q. L. Xu, G. F. Qian, S. B. Yin, C. Yu, W. Chen, T. Q. Yu, L. Luo, Y. J. Xia, P. Tsiakaras, Design and synthesis of highly performing bifunctional Ni-NiO-MoNi hybrid catalysts for enhanced urea oxidation and hydrogen evolution reactions, ACS Sustainable Chem. Eng., 8 (2020) 7174–7181.

[S3] X. Y. Zhuo, W. J. Jiang, G. F. Qian, J. L. Chen, T. Q. Yu, L. Luo, L. H. Lu, Y. L.

Chen, S. B. Yin, Ni<sub>3</sub>S<sub>2</sub>/Ni heterostructure nanobelt arrays as bifunctional catalysts for urea-rich wastewater degradation., ACS Appl. Mater. Interfaces., 13 (2021) 35709–35718.

[S4] J. C. Liu, Y. Wang, Y. F. Liao, C. L. Wu, Y. G. Yan, H. J. Xie, Y. G. Chen, Heterostructured Ni<sub>3</sub>S<sub>2</sub>-Ni<sub>3</sub>P/NF as a bifunctional catalyst for overall urea-water electrolysis for hydrogen generation, ACS Appl. Mater. Interfaces., 13 (2021) 26948– 26959.

[S5] S. N. Hu, S. Q. Wang, C. Q. Feng, H. M. Wu, J. J. Zhang, H. Mei, Novel MOFderived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation, ACS Sustainable Chem. Eng., 8 (2020) 7414–7422.

[S6] H. J. Zhang, X. F. Meng, J. F. Zhang, Y. Huang, Hierarchical NiFe hydroxide/Ni<sub>3</sub>N nanosheet-on-nanosheet heterostructures for bifunctional oxygen evolution and urea oxidation reactions, ACS Sustainable Chem. Eng., 9 (2021) 12584–12590.

[S7] N. Chen, Y. K. Du, G. Zhang, W. T. Lu, F. F. Cao, Amorphous nickel sulfoselenide for efficient electrochemical urea-assisted hydrogen production in alkaline media, Nano Energy, 81 (2021) 105605.

[S8] H. Jiang, M. Z. Sun, S. L. Wu, B. L. Huang, C. S. Lee, W. J. Zhang, Oxygenincorporated NiMoP nanotube arrays as effcient bifunctional electrocatalysts for ureaassisted energy-saving hydrogen production in alkaline electrolyte, Adv. Funct. Mater., 31 (2021) 2104951.

[S9] W. X. Zhu, M. R. Ren, N. Hu, W. T. Zhang, Z. T. Luo, R. Wang, J. Wang, L. J. Huang, Y. R. Suo, J. L. Wang, Traditional NiCo<sub>2</sub>S<sub>4</sub> phase with porous nanosheets array topology on carbon cloth: a flexible, versatile and fabulous electrocatalyst for overall water and urea electrolysis, ACS Sustainable Chem. Eng., 6 (2018) 5011–5020.

[S10] Y. Pei, Y. Yang, F. Zhang, P. Dong, R. Baines, Y. Ge, H. Chu, P. M. Ajayan, J. Shen, M. Ye, Controlled electrodeposition synthesis of Co-Ni-P film as a flexible and inexpensive electrode for efficient overall water splitting, ACS Appl. Mater.

Interfaces., 9 (2017) 31887-31896.

[S11] Y. Zhang, Y. Ma, Y. Y. Chen, L. Zhao, L. B. Huang, H. Luo, W. J. Jiang, X. Zhang, S. Niu, D. Gao, J. Bi, G. Fan, J. S. Hu, Encased copper boosts the electrocatalytic activity of N-doped carbon nanotubes for hydrogen evolution, ACS Appl. Mater. Interfaces., 9 (2017) 36857–36864.

[S12] K. Fan, H. Zou, N. V. R. A. Dharanipragada, L. Fan, A. K. Inge, L. Duan, B. Zhang, L. Sun, Surface and bulk reconstruction of CoW sulfides during ph-universal electrocatalytic hydrogen evolution, J. Mater. Chem. A., 9 (2021) 11359–11369.

[S13] Z. Wang, P. Guo, M. Liu, C. Guo, H. Liu, S. Wei, J. Zhang, X. Lu, Rational design of metallic NiTex (x = 1 or 2) as bifunctional electrocatalysts for efficient urea conversion, ACS Appl Energ Mater., 2 (2019) 3363–3372.

[S14] P. Li, Z. Zhuang, C. Du, D. Xiang, F. Zheng, Z. Zhang, Z. Fang, J. Guo, S. Zhu, W. Chen, Insights into the Mo-Doping effect on the electrocatalytic performance of hierarchical CoxMoyS nanosheet arrays for hydrogen generation and urea oxidation, ACS Appl. Mater. Interfaces., 12 (2020) 40194–40203.

[S15] H. Xu, K. Ye, K. Zhu, Y. Gao, J. Yin, J. Yan, G. Wang, D. Cao, Transforming carnation-shaped MOF-Ni to Ni–Fe prussian blue analogue derived efficient bifunctional electrocatalyst for urea electrolysis, ACS Sustainable Chem. Eng., 8 (2020) 16037–16045.

[S16] S. Hu, C. Feng, S. Wang, J. Liu, H. Wu, L. Zhang, J. Zhang, Ni<sub>3</sub>N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition, ACS Appl. Mater. Interfaces., 11 (2019) 13168–13175.