Supporting Information for

A perylene diimide-based fluorescence probe for selective detection of

hypochlorite in living cells

Le Zhang, ‡ Yi-Fan Zhang ‡ and Ying-Feng Han*

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education

Xi'an Key Laboratory of Functional Supramolecular Structure and Materials

College of Chemistry and Materials Science, Northwest University, Xi'an 710127 (P. R. China)

E-mail: <u>yfhan@nwu.edu.cn</u>

Table of Contents:

1. NMR spectrum of Compound 1	S2		
2. NMR and MS spectra of Compound 2	S2		
3. NMR spectrum of Compound PDI-S	S4		
4. Fluorescence intensity changes at 564 nm of PDI-S as a function of time in the			
presence of different concentrations of OCI ⁻	S7		
5. Linear correlation between the intensity of fluorescence at 564 nm and OCI^{-}			
concentration	S7		
6. The reporting of the detection limit for OCl ⁻ the previous literature	S8		
7. NMR and MS spectra of Compound 2 (PDI-S with OCI ⁻ reaction)	S8		
8. Frontier orbitals of Compound 2 and PDI-S	S9		
9. Cytotoxicity of A549 cells, SHSY-5Y cells, RAW 264.7 macrophages and MCF-10A			
cells incubation with PDI-S	S10		
10. The kinetic curve of PDI-S in the presence of OCI ⁻	S10		
11. UV-vis spectra of PDI-S in the presence of different concentrations of OCI-	S11		
12. References	S12		

Fig. S1 ¹H NMR spectrum of Compound **1** (400 MHz, [D₆]DMSO).

Fig. S2 ¹H NMR spectrum of diimidazolium salt 2 (400 MHz, [D₆]DMSO).

Fig. S3 ¹³C NMR spectrum of diimidazolium salt 2 (150 MHz, [D₆]DMSO).

Fig. S4 HR-ESI mass spectrum (positive ions) of diimidazolium salt 2.

Fig. S5 ¹H NMR spectrum of Compound PDI-S (400 MHz, CDCl₃).

Fig. S6 ¹³C NMR spectrum of PDI-S (150 MHz, CDCl₃).

Fig. S7 ¹H-¹H COSY NMR spectrum of PDI-S (600 MHz, CDCl₃).

Fig. S8 ¹H-¹³C HSQC NMR spectrum of PDI-S (600 MHz, CDCl₃).

Fig. S9 ¹H-¹³C HMBC NMR spectrum of PDI-S (600 MHz, CDCl₃).

Fig. S10 DOSY NMR spectrum of PDI-S (600 MHz, CDCl₃).

Fig. S11 Fluorescence intensity changes at 564 nm of **PDI-S** as a function of time in the presence of different concentrations of OCI⁻ (0.5 μ M, 1.0 μ M, 1.5 μ M, 2.0 μ M,) in PBS (50 mM, pH 7.4).

Fig. S12 Linear correlation between the intensity of fluorescence at 564 nm and OCl⁻ concentration (6 - 12 μ M). (Detection limit = 2.10 x 10⁻⁹, R² = 0.999). (Interval reaction times: 3 min).

excitation	emission	detection limit	refs
480 nm	529 nm	5.20 x 10 ⁻⁷ M	1
540 nm	575 nm	2.40 x 10 ⁻⁸ M	2
400 nm	562 nm	1.79 x 10 ⁻⁸ M	3
410 nm	522 nm / 644 nm	4.30 x 10 ⁻⁷ M	4
553 nm	580 nm	9.00 x 10 ⁻⁹ M	5
375 nm	500 nm	1.66 x 10 ⁻⁸ M	6
422 nm	546 nm	7.90 x 10 ⁻⁷ M	7
365 nm	435 nm / 575 nm	2.80 x 10 ⁻⁸ M	8
325 nm	447 nm	2.10 x 10 ⁻⁷ M	9

Table S1: The reporting of the detection limit for OCI⁻ the previous literature

Fig. S13 ¹H NMR spectrum of the product of **PDI-S** with OCl⁻ (400 MHz, $[D_6]DMSO$) (* = unidentified impurity).

Fig. S14 HR-ESI mass spectrum (positive ions) of the product of PDI-S with OCI-.

Fig. S15 Frontier orbitals of Compound **2** and **PDI-S** calculated using DFT (B3LYP/6-31G*).

Fig. S16 Cytotoxicity of A549 cells, SHSY-5Y cells, RAW 264.7 macrophages, and MCF-10A cells incubation with each concentration of **PDI-S** for 24 h, respectively.

Fig. S17 The kinetic curve of **PDI-S** in the presence of OCI⁻ in PBS buffer (50 mM, pH 7.4, DMF 0.2%).

Fig. S18 UV-vis spectra of **PDI-S** in the presence of different concentration of OCI⁻ in PBS buffer (50 mM, pH 7.4, DMF 0.2%).

References

- 1. G. Cheng, J. Fan, W. Sun, K. Sui, X. Jin, J. Wang and X. Peng, A Highly Specific BODIPY-Based Probe Localized in Mitochondria for HClO Imaging, *Analyst*, 2013, **138**, 6091-6096.
- J.-T. Hou, M.-Y. Wu, K. Li, J. Yang, K.-K. Yu, Y.-M. Xie and X.-Q. Yu, Mitochondria-Targeted Colorimetric and Fluorescent Probes for Hypochlorite and their Applications for *in Vivo* Imaging, *Chem. Commun.*, 2014, **50**, 8640-8643.
- 3. H. Xiao, K. Xin, H. Dou, G. Yin, Y. Quan and R. Wang, A Fast-Responsive Mitochondria-Targeted Fluorescent Probe Detecting Endogenous Hypochlorite in Living RAW 264.7 Cells and Nude Mouse, *Chem. Commun.*, 2015, **51**, 1442-1445.
- 4. H. Xiao, J. Li, J. Zhao, G. Yin, Y. Quan, J. Wang and R. Wang, A Colorimetric and Ratiometric Fluorescent Probe for ClO⁻ Targeting in Mitochondria and its Application *in Vivo*, *J. Mater. Chem. B*, 2015, **3**, 1633-1638.
- J. Zhou, L. Li, W. Shi, X. Gao, X. Li and H. Ma, HOCI Can Appear in the Mitochondria of Macrophages During Bacterial Infection as Revealed by A Sensitive Mitochondrial-Targeting Fluorescent Probe, *Chem. Sci.*, 2015, 6, 4884-4888.
- L. Yuan, L. Wang, B. K. Agrawalla, S.-J. Park, H. Zhu, B. Sivaraman, J. Peng, Q.-H. Xu and Y.-T. Chang, Development of Targetable Two-Photon Fluorescent Probes to Image Hypochlorous Acid in Mitochondria and Lysosome in Live Cell and Inflamed Mouse Model, J. Am. Chem. Soc., 2015, 137, 5930-5938.
- D. Li, Y. Feng, J. Lin, M. Chen, S. Wang, X. Wang, H. Sheng, Z. Shao, M. Zhu and X. Meng, A Mitochondria-Targeted Two-Photon Fluorescent Probe for Highly Selective and Rapid Detection of Hypochlorite and its Bio-Imaging in Living Cells, *Sens. Actuators, B*, 2016, **222**, 483-491.
- L. Zhou, D.-Q. Lu, Q. Wang, S. Hu, H. Wang, H. Sun and X. Zhang, A High-Resolution Mitochondria-Targeting Ratiometric Fluorescent Probe for Detection of the Endogenous Hypochlorous Acid, Spectrochim. Acta Part A, 2016, 166, 129-134.
- Q. Xu, C. H. Heo, J. A. Kim, H. S. Lee, Y. Hu, D. Kim, K M. K. Swamy, G. Kim, S.-J. Nam, H. M. Kim and J. Yoon, A Selective Imidazoline-2-Thione-Bearing Two-Photon Fluorescent Probe for Hypochlorous Acid in Mitochondria, *Anal. Chem.*, 2016, 88, 6615-6620.