Electronic Supplementary Information (ESI)

Ultralong Blue Room-temperature Phosphorescence by Cycloalkyl Engineering

Zhenxing Cong^a, Mengmeng Han^a, Yuanyuan Fan^a, Yunhao Fan^a, Kai Chang^a, Leyi Xiao^b, Yufeng Zhang^b, Xu Zhen^c, Qianqian Li^{a,*}, Zhen Li^{a,d,*}

^a Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.

^b School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.

^c College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, China.

^d Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.

Table S1. Phosphorescence wavelengths (λ_{em}) and lifetimes (τ) of pure organic materials with blue RTP emission in literatures reported previously (Phosphorescence wavelengths :400~485 nm).

Sample	Molecular structure	$\lambda_{\mathrm{em}} \left(\mathrm{nm} \right)$	τ (ms)	References
B-1 (TSP)	$\left[\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right] 4 Na^{+}$	447	168.39	
B-2 (TMP)	$\left[\begin{array}{c} 0 = \begin{pmatrix} 0 & 0 \\ 0 = \begin{pmatrix} 0 & 0 \\ 0 = \begin{pmatrix} 0 & 0 \\ 0 = \end{pmatrix} \\ 0 = \begin{pmatrix} 0 & 0 \\ 0 = \end{pmatrix} \right] \left[\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 = \end{pmatrix} \right]_{i}$	464	136.29	
B-3 (TPP)	$\left[\begin{array}{c} 0^{-} \swarrow 0 & 0 \\ 0^{-} \swarrow 0^{-} \\ 0^{-} \swarrow 0^{-} \end{array}\right] 4K^{+}$	420	132.61	Nat. Mater., 2021, 20, 1539-1544
B-4 (HSM)	$\left[\begin{array}{c} 0^{-} & 0^{-} & 0^{-} \\ H^{0} & - & 0^{-} \\ 0^{-} & - & 0^{-} \end{array}\right] 4Na^{+}$	407	199.17	
B-5 (HPM)	$\left[\begin{array}{c} 0^{-} ^{0} ^{0} ^{0} - \\ 0^{-} ^{0} ^{0} - \\ 0^{-} ^{0} - \end{array}\right] 5K^{+}$	410	101.20	
B-6 (TNP)		454	184.91	
B-7 (MEL)	$NH_2 \\ N \not \sim N \\ H_2 N \not \sim N H_2$	465	580	Anal. Chem., 2021, 93, 4075-4083

B-8 (TPP-3CB)		480	157	
B-9 (TPP-4CB)		480	200	
B-10 (TPP-3C2B)	Br P+	480	159	Aav. Mater., 2020, 32, 2001026
B-11 (TPP-4C2B)	Br Pt	480	164	
B-12 (HA)		456	1113.0	
B-13 (MDHA)		450	928.2	Mater. Horiz., 2020, 7, 2105-2112
B-14 (EDHA)		450	491.5	
B-15 (TMOT)		465	580	
B-16 (DMOT)		430	2450	Nat. Photon., 2019, 13, 406-411
B-17 (DPT)	[0 [−] / ₀ → √ ⁰ / ₀] 2K ⁺] 2K ⁺	456	174.31	Angew. Chem. Int. Ed., 2018, 57, 678-682.
B-18 (TOP)		416	290.28	J. Phys. Chem. Lett., 2018, 9, 3808-3813
B-19 (CS-2COOCH ₃)	H ₃ COOC COOCH ₃ COOCH ₃ COOCH ₃	430	91	Chem. Sci., 2020, 11, 833-838
B-20 (TFTPA)		484	17.93	Chem. Sci., 2015, 6, 4438-4444

B-21 (DMTPA)	420	2.69	
B-22 (DMTFTPA)	484	9.12	
B-23 (CzS-F)	483	410	Nat. Commun., 2018, 9, 840
C6-CsO	471	1116.10	this work
C5-CsO	403	51.96	this work
C7-CsO	409	60.75	this work
N ₄ -CsO	471	249.43	this work

Table S2. Phosphorescence wavelengths (λ_{em}) and lifetimes (τ) of RTP emission in reported phenothiazine-5,5-dioxide based RTP materials.

Sample	Molecular structure	λ_{em} (nm)	τ (ms)	References
1-CsO (CzS-H)		525	188	
2-CsO (CzS-CH ₃)		516	96	Nat. Commun., 2018, 9, 840
3-CsO (CzS-OCH ₃)		509	88	

4-CsO (CzS-Cl)	500	256	
5-CsO (CzS-Br)	525	268	
B-23 (CzS-F)	483	410	
7-CsO (DOPEO)	514	876	Angew. Chem. Int. Ed., 2019, 58,
8-CsO (DOPPMO)	490	455	6645-6649
9-CsO (Cs-CH ₃)	515	245	
10-CsO (Cs-C ₂ H ₅)	515	92	
11-CsO (Cs-C3H7)	490	327	Mater. Chem. Front., 2019,3, 1391- 1397
12-CsO (Cs-C ₄ H ₉)	509	181	
13-CsO (Cs-C5H11)	516	205	

14-CsO (Cs-C ₆ H ₁₃)	510	_	
B-19 (CS-2COOCH ₃)	430	91	Chem. Sci., 2020, 11, 833-838
C3-CsO	515	470.16	this work
C4-CsO	516	808.05	this work
C5-CsO	403	51.96	this work
C6-CsO	471	1116.10	this work
C7-CsO	409	60.75	this work
N ₃ -CsO	515	989.06	this work
N4-CsO	471	249.43	this work
N5-CsO	438	0.27	this work
N ₆ -CsO	450	0.74	this work

452

this work

1. Experiment section

1.1 Materials

All starting chemicals were purchased from commercial sources and used without further purification. Column chromatography was carried out on silica gel using 200-300 mesh.

1.2 Instruments

¹H and ¹³C NMR spectra were characterized on a Bruker Avance III HD 400 MHz using tetramethylsilane as internal standard. Mass spectra were recorded on a LCQadvantage mass spectrophotometer. Elemental analyses were conducted on a RARIO EL III. Photoluminescence spectra, phosphorescence spectra at room temperature and 77 K were determined on a Hitachi F-4600 fluorescence spectrophotometer. UV-vis spectra were measured on a Shimadzu UV-2550 spectrometer. Lifetimes and quantum yields were measured with FLS980 spectrometer. The single-crystal X-ray diffraction data were conducted in a Bruker Smart Apex CCD diffractometer. The powder X-ray diffraction patterns were characterized by D8 Advanced (Bruker) using Cu-Kα radiation. Size distribution of nanoparticles by Dynamic Light Scattering (DLS) were measured on Brookhaven instrument. The phosphorescent intensities of nanoparticles and bioimaging were recorded on IVIS® imaging system.

1.3 Synthetic procedures

Scheme S1 Synthetic routes of C_n -CsO and N_n -CsO series.

The general procedure for the synthesis of C_n-Cs and N_n-Cs series.

Phenothiazine (1.0 equiv.) and triethylamine (1.0 equiv.) were dissolved in dichloromethane (DCM) (50 mL) and then stirred at room temperature for 15 min. Then acyl chloride (2.0 equiv.) was added dropwise, the reaction mixture was refluxed at 50 °C for 24 h. After being cooled to room temperature, the mixture was washed by NaHCO₃ saturated aqueous solution (50 mL×3), 5% HCl (50 mL×3), and H₂O (50 mL×2) in sequence, extracted with DCM for three times (chloroform, a controlled drug, is not convenient to buy, so dichloromethane is selected). The combined organic extracts were dried over anhydrous Na₂SO₄ and the solvent was removed by rotary evaporation. The crude product was purified by silica gel column

chromatography using petroleum ether (PE) and DCM (2:1 v/v) as eluent to afford a solid product.

*C*₃-Cs: White solid (0.97 g, 72.36%). mp: 99 °C; ¹H NMR (400 MHz, CD₂Cl₂) δ 7.62-7.60 (dd, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.47-7.44 (dd, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.35-7.31 (td, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.25-7.21 (td, *J* = 8.0, 1.6 Hz, 2H, -ArH), 1.86-1.79 (m, 1H), 1.13-1.10 (m, 2H, -CH₂-), 0.83-0.79 (m, 2H, -CH₂-). ¹³C NMR (100 MHz, CD₂Cl₂) δ 172.35, 139.41, 133.30, 128.20, 127.73, 127.19, 126.92, 13.09, 9.74. MS (ESI), m/z: [M+H]⁺ calcd for C₁₆H₁₄NOS, 268.4; found: 268.1. Anal. Cacld for C₁₆H₁₃NOS: C, 71.88; H, 4.90; N, 5.24. Found: C, 71.81; H, 4.82; N, 5.50.

*C*₄-Cs: White solid (1.34 g, 59.61%). mp: 131 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 7.49-7.47 (d, *J* = 8.0 Hz, 2H, -ArH), 7.45-7.42 (dd, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.35-7.31 (td, *J* = 4.0, 1.5 Hz, 2H, -ArH), 7.26-7.22 (td, *J* = 8.0, 4.0 Hz, 2H, -ArH), 3.54-3.45 (m, 1H), 2.24 (br, 2H, -CH₂-), 1.84-1.71 (m, 4H, -CH₂-). ¹³C NMR (100 MHz, CD₂Cl₂) δ 174.29, 139.34, 128.09, 127.32, 127.04, 38.55, 25.88, 17.85. MS (ESI), m/z: [M+Na]⁺ calcd for C₁₇H₁₅NOSNa, 304.4; found: 303.9. Anal. Cacld for C₁₇H₁₅NOS: C, 72.57; H, 5.37; N, 4.98. Found: C, 72.51; H, 5.31; N, 5.12.

*C*₅-Cs: White solid (2.64 g, 68.84%). mp: 128 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 7.44-7.42 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 7.38-7.36 (dd, *J* = 8.0, 1.5 Hz, 2H, -ArH), 7.27-7.22 (dd, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.17-7.13 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 3.08-3.00 (m, 1H), 1.73-1.67 (br, 2H, -CH₂-), 1.62-1.53 (m, 4H, -CH₂-), 1.42-1.36 (m, 2H, -CH₂-). ¹³C NMR (100 MHz, CD₂Cl₂) δ 176.1, 139.69, 134.07, 128.23, 127.80, 127.31, 127.00, 42.08, 31.22, 26.67. MS (ESI), m/z: [M+Na]⁺ calcd for C₁₈H₁₇NOSNa, 318.4; found: 318.0. Anal. Cacld for C₁₈H₁₇NOS: C, 73.19; H, 5.80; N, 4.74. Found: C, 73.38; H, 5.75; N, 4.78.

*C*₆-Cs: White solid (3.12 g, 59.29%). mp: 135 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 7.51-7.49 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 7.47-7.45 (dd, *J* = 8.0, 1.5 Hz, 2H, -ArH), 7.36-7.31 (td, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.26-7.22 (td, *J* = 8.0, 1.4 Hz, 2H, -ArH), 2.77-2.69 (m, 1H), 1.73-1.67 (m, 4H, -CH₂-), 1.52-1.42 (m, 2H, -CH₂-) 1.27-1.02 (m, 4H, -CH₂-). ¹³C NMR (100 MHz, CD₂Cl₂) δ 175.54, 139.56, 133.99, 128.32, 127.68, 127.29, 127.03, 41.31, 29.90, 26.04, 25.92. MS (ESI), m/z: [M+Na]⁺ calcd for C₁₉H₁₉NOSNa, 332.4; found: 331.9. Anal. Cacld for C₁₉H₁₉NOS: C, 73.75; H, 6.19; N, 4.53. Found: C, 73.70; H, 6.21; N, 4.75.

*C*₇-Cs: White solid (1.89 g, 58.72%). mp: 88 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 7.50-7.48 (dd, *J* = 8.0, 1.3 Hz, 2H, -ArH), 7.47-7.45 (dd, *J* = 8.0, 1.5 Hz, 2H, -ArH), 7.36-7.31 (td, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.26-7.22 (td, *J* = 8.0, 1.4 Hz, 2H, -ArH), 2.95-2.88 (m, 1H), 1.76 (br, 2H, -CH₂-), 1.69-1.65 (m, 4H, -CH₂-), 1.49-1.44 (m, 4H, -CH₂-), 1.27-1.23 (m, 2H, -CH₂-). ¹³C NMR (100 MHz, CD₂Cl₂) δ 176.75, 139.59, 134.07, 128.30, 127.84, 127.28, 127.02, 41.95, 31.80, 28.57, 26.90. MS (ESI), m/z: [M+H]⁺ calcd for C₂₀H₂₂NOS, 324.5 found: 324.2. Anal. Cacld for C₂₀H₂₁NOS: C, 74.27; H, 6.54; N, 4.33. Found: C, 74.13; H, 6.57; N, 4.46.

*N*₃-Cs: White solid (1.89 g, 70.59%). mp: 77 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 7.51-7.49 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 7.47-7.45 (dd, *J* = 8.0, 1.5 Hz, 2H, -ArH), 7.36-7.31 (td, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.26-7.22 (td, *J* = 8.0, 1.4 Hz, 2H, -ArH), 2.44-2.40 (t, *J* = 8.0 Hz, 2H, -CH₂-), 1.63 - 1.54 (m, 2H, -CH₂-), 0.87-0.83 (t, *J* = 8.0 Hz, 3H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 172.21, 139.51, 133.78, 128.26, 127.84, 127.30, 127.08, 36.55, 19.11, 13.82. MS (ESI), m/z: [M+H]⁺ calcd for C₁₆H₁₆NOS, 270.4 found: 270.1. Anal. Cacld for C₁₆H₁₅NOS: C, 71.34; H, 5.61; N, 5.20. Found: C, 71.22; H, 5.43; N, 5.26. *N*₄-Cs: White solid (1.95 g, 68.90%). mp: 86 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 7.51-7.49 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 7.47-7.45 (dd, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.35-7.31 (td, *J* = 8.0, 1.5 Hz, 2H, -ArH), 7.26-7.22 (td, *J* = 8.0, 1.4 Hz, 2H, -ArH), 2.46-2.42 (t, *J* = 8.0, Hz, 2H, -CH₂-), 1.57 - 1.50 (m, 2H, -CH₂-), 1.29-1.20 (m, 2H, -CH₂-), 0.83-0.79 (t, *J* = 8.0, Hz, 3H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 172.39, 139.52, 133.77, 128.26, 127.83, 127.30, 127.08, 34.30, 27.79, 22.56, 13.90. MS (ESI), m/z: [M+H]⁺ calcd for C₁₇H₁₈NOS, 284.4 found: 284.1. Anal. Cacld for C₁₇H₁₇NOS: C, 72.05; H, 6.05; N, 4.94. Found: C, 72.24; H, 6.02; N, 5.18.

*N*₅-Cs: White solid (2.62 g, 88.28%). mp: 119 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 7.51-7.49 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 7.47-7.45 (dd, *J* = 8.0, 1.5 Hz, 2H, -ArH), 7.35-7.31 (dd, *J* = 8.0, 1.5 Hz, 2H, -ArH), 7.26-7.22 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 2.45-2.42 (t, *J* = 8.0 Hz, 2H, -CH₂-), 1.59 - 1.52 (m, 2H, -CH₂-), 1.22 - 1.18 (m, 4H, -CH₂-), 0.84 - 0.81 (t, *J* = 8.0, Hz, 3H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 172.40 139.52, 133.78, 128.26, 127.83, 127.29, 127.07, 34.56, 31.61, 25.38, 22.72, 14.05. MS (ESI), m/z: [M+H]⁺ calcd for C₁₈H₂₀NOS, 298.4 found: 298.2. Anal. Cacld for C₁₈H₁₉NOS: C, 72.69; H, 6.44; N, 4.71. Found: C, 72.71; H, 6.43; N, 4.81.

*N*₆-Cs: White solid (2.75 g, 88.42%). mp: 100 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 7.51-7.49 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 7.47-7.45 (dd, *J* = 8.0, 1.5 Hz, 2H, -ArH), 7.35-7.31 (dd, *J* = 8.0, 1.5 Hz, 2H, -ArH), 7.26-7.22 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 2.46-2.42 (t, *J* = 8.0 Hz, 2H, -CH₂-), 1.58 - 1.51 (m, 2H, -CH₂-), 1.26 - 1.14 (m, 6H, -CH₂-), 0.85-0.82 (t, *J* = 8.0 Hz, 3H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 172.42, 139.53, 133.79, 128.26, 127.83, 127.29, 127.07, 34.58, 31.86, 29.10, 25.67, 22.86, 14.18. MS (ESI), m/z: [M+H]⁺ calcd for C₁₉H₂₂NOS, 312.4 found: 312.1. Anal. Cacld for C₁₉H₂₁NOS: C, 73.27; H, 6.80; N, 4.50. Found: C, 73.26; H, 6.76; N, 4.48.

*N*₇-Cs: White solid (2.70 g, 83.20%) mp: 61 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 7.51-7.49 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 7.47-7.45 (dd, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.35-7.31 (dd, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.26-7.22 (dd, *J* = 8.0, 1.4 Hz, 2H, -ArH), 2.45-2.42 (t, *J* = 8.0 Hz, 2H, -CH₂-), 1.58-1.51 (m, 2H, -CH₂-), 1.25-1.19 (m, 8H, -CH₂-), 0.87-0.83 (t, *J* = 8.0 Hz, 3H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 172.42, 139.53, 133.80, 128.25, 127.83, 127.29, 127.07, 34.57, 32.03, 29.37, 29.32, 25.71, 22.99, 14.22. MS (ESI), m/z: [M+H]⁺ calcd for C₂₀H₂₄NOS, 326.5 found: 326.2. Anal. Cacld for C₂₀H₂₃NOS: C, 73.81; H, 7.12; N, 4.30. Found: C, 73.96; H, 7.16; N, 4.55.

The general synthetic route of C_n-CsO and N_n-CsO series.

The above collected C_n -Cs and N_n -Cs product (3.0-10.0 mmol) was dissolved in the mixture of DCM (20 -30 mL), acetic acid (30-40 mL) and H₂O₂ (5-10 mL) in a 100 mL flask, respectively. Then the mixture was refluxed at 70 °C for 24 h. After being cooled to room temperature, the reaction mixture was washed with H₂O (50 mL×2), extracted with DCM for three times. The organic extracts were dried over anhydrous Na₂SO₄, and the solvent was removed the solvent by rotary evaporation. The product was further purified by column chromatography using petroleum ether/ DCM (1:1 v/v) as eluent to afford a solid product.

*C*₃-CsO: White solid (0.51 g, 84.95%). mp: 216 °C; ¹H NMR (400 MHz, CD₂Cl₂) δ 8.02-8.00 (dd, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.91-7.89 (dd, *J* = 8.0, 1.1 Hz, 2H, -ArH), 7.65 - 7.61 (td, *J* = 8.0, 1.4 Hz, 2H, -ArH), 7.51-7.47 (td, *J* = 8.0, 1.1 Hz, 2H, -ArH), 1.96-1.90 (m, 1H), 1.24 - 1.20 (m, 2H, -CH₂-), 0.97-0.92 (m, 2H, -CH₂-). ¹³C NMR (100 MHz, CD₂Cl₂) δ 172.31, 140.20, 134.75, 132.89, 127.76, 127.27, 124.04, 14.56, 10.93. MS (ESI), m/z: [M+Na]⁺ calcd for C₁₆H₁₃NO₃SNa, 322.3 found: 322.1. Anal. Cacld for C₁₆H₁₃NO₃S: C, 64.20; H, 4.38; N, 4.68. Found: C, 63.70; H, 4.23; N, 4.69. **8** / **40**

*C*₄-CsO: White solid (0.53 g, 47.56%). mp: 227 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 8.00-7.97 (dd, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.76-7.74 (dd, *J* = 8.0, 1.1 Hz, 2H, -ArH), 7.65-7.61 (td, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.52-7.48 (td, *J* = 8.0, 4.0 Hz, 2H, -ArH), 3.69-3.61 (m, 1H), 2.41 - 2.31 (m, 2H, -CH₂-), 1.93 - 1.73 (m, 4H, -CH₂-). ¹³C NMR (100 MHz, CD₂Cl₂) δ 173.49, 140.20, 135.08, 132.99, 127.53, 127.46, 124.10, 39.40, 25.89, 17.84. MS (ESI), m/z: [M+Na]⁺ calcd for C₁₇H₁₅NO₃SNa, 336.4 found: 336.1. Anal. Cacld for C₁₇H₁₅NO₃S: C, 65.16; H, 4.82; N, 4.47. Found: C, 65.18; H, 4.71; N, 4.62.

*C*₅-CsO: White solid (1.13 g, 75.22%). mp: 231 °C. ¹H NMR (400 MHz,CD₂Cl₂) δ 8.00-7.98 (dd, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.79-7.76 (dd, *J* = 8.0 1.1 Hz, 2H, -ArH), 7.65-7.60 (td, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.51-7.47 (td, *J* = 8.0, 1.1 Hz, 2H, -ArH), 3.29-3.21 (m, 1H), 1.92 - 1.83 (m, 2H, -CH₂-), 1.79 - 1.67 (m, 4H, -CH₂-), 1.55 - 1.45 (m, 2H, -CH₂-). ¹³C NMR (100 MHz, CD₂Cl₂) δ 175.65, 140.54, 135.37, 132.92, 127.83, 127.42, 124.16, 43.33, 31.53, 26.55. MS (ESI), m/z: [M+Na]⁺ calcd for C₁₈H₁₇NO₃SNa, 350.4 found: 350.1. Anal. Cacld for C₁₈H₁₇NO₃S: C, 66.04; H, 5.23; N, 4.28. Found: C, 65.99; H, 5.15; N, 4.31

*C*₆-CsO: White solid (0.71 g, 80.73%). mp: 254 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 8.01-7.98 (dd, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.76-7.74 (dd, *J* = 8.0, 1.1 Hz, 2H, -ArH), 7.65-7.61 (td, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.52-7.48 (td, *J* = 8.0, 4.0 Hz, 2H, -ArH), 2.91-2.83 (tt, *J* = 11.5, 3.4 Hz, 1H), 1.88 - 1.83 (m, 2H, -CH₂-), 1.75-1.70 (m, 2H, -CH₂-), 1.63 - 1.47 (m, 3H, -CH₂-), 1.28 - 1.05 (m, 3H, -CH₂-); ¹³C NMR (100 MHz, CD₂Cl₂) δ 175.00, 140.41, 135.28, 132.90, 127.66, 127.43, 124.22, 42.62, 29.85, 25.90, 25.73. MS (ESI), m/z: [M+Na]⁺ calcd for C₁₉H₁₉NO₃SNa, 364.4 found: 364.2. Anal. Cacld for C₁₉H₁₉NO₃S: C, 66.84; H, 5.61; N, 4.10. Found: C, 66.78; H, 5.58; N, 4.32.

*C*₇-CsO: White solid (0.91 g, 71.99%). mp: 209 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 8.01-7.98 (dd, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.75-7.73 (dd, *J* = 8.0, 1.1 Hz, 2H, -ArH), 7.65 - 7.61 (td, *J* = 8.0, 4.0 Hz, 2H, -ArH), 7.51-7.47 (td, *J* = 8.0, 1.1 Hz, 2H, -ArH), 3.07-3.00 (m, 1H), 1.94 - 1.87 (m, 2H, -CH₂-), 1.78 - 1.69 (m, 4H, -CH₂-), 1.54 - 1.45 (m, 4H, -CH₂-), 1.35-1.25 (m, 2H, -CH₂-). ¹³C NMR (100 MHz, CD₂Cl₂) δ 176.15, 140.46, 135.31, 132.87, 127.75, 127.41, 124.22, 43.43, 31.77, 28.63, 26.66. MS (ESI), m/z: [M+Na]⁺ calcd for C₂₀H₂₁NO₃SNa, 378.5 found: 378.2. Anal. Cacld for C₂₀H₂₁NO₃S: C, 67.58; H, 5.96; N, 3.94. Found: C, 67.43; H, 5.92; N, 4.04.

*N*₃-CsO: White solid (0.78 g, 69.66%). mp: 205 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 8.00-7.98 (dd, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.76-7.74 (dd, *J* = 8.0, 1.1 Hz, 2H, -ArH), 7.65-7.61 (td, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.52-7.48 (td, *J* = 8.0, 1.1 Hz, 2H, -ArH), 2.59-2.55 (t, *J* = 8.0, Hz, 2H, -CH₂-), 170-1.61 (m, 2H, -CH₂-), 0.90-0.86 (t, *J* = 8.0, Hz, 3H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 171.69, 140.41, 135.45, 132.97, 128.07, 127.55, 124.17, 37.50, 18.93, 13.72. MS (ESI), m/z: [M+H]⁺ calcd for C₁₆H₁₆NO₃S, 302.4 found: 302.1. Anal. Cacld for C₁₆H₁₅NO₃S: C, 63.77; H, 5.02; N, 4.65. Found: C, 63.73; H, 4.96; N, 4.72.

*N*₄-CsO: White solid (0.76 g, 67.89%). mp: 182 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 8.00-7.98 (dd, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.76-7.74 (dd, *J* = 8.0, 1.1 Hz, 2H, -ArH), 7.65-7.61 (td, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.52-7.48 (td, *J* = 8.0, 1.1 Hz, 2H, -ArH), 2.61-2.57 (t, *J* = 8.0, Hz, 2H, -CH₂-), 1.65-1.58 (m, 2H, -CH₂-), 1.32-1.23 (m, 2H, -CH₂-), 0.84 (t, *J* = 8.0, Hz, 3H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 171.82, 140.42, 135.45, 132.96, 128.05, 127.54, 124.17, 35.32, 27.51, 22.48, 13.88.

MS (ESI), m/z: [M+H]⁺ calcd for C₁₇H₁₈NO₃S, 316.4 found: 316.1. Anal. Cacld for C₁₇H₁₇NO₃S: C, 64.74; H, 5.43; N, 4.44. Found: C, 64.78; H, 5.40; N, 4.58.

*N*₅-CsO: White solid (0.97 g, 62.73%). mp: 161 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 8.00-7.98 (dd, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.76-7.74 (dd, *J* = 8.0, 1.1 Hz, 2H, -ArH), 7.65-7.61 (td, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.52-7.48 (td, *J* = 8.0, 1.1 Hz, 2H, -ArH), 2.60-2.56 (t, *J* = 8.0, Hz, 2H, -CH₂-), 1.67-1.60 (m, 2H, -CH₂-), 1.25 - 1.23 (m, 4H, -CH₂-), 0.86 - 0.82 (t, *J* = 8.0, Hz, 3H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 171.84, 140.43, 135.45, 132.96, 128.06, 127.53, 124.17, 35.57, 31.50, 25.13, 22.71, 14.02. MS (ESI), m/z: [M+H]⁺ calcd for C₁₈H₂₀NO₃S, 330.4 found: 330.0. Anal. Cacld for C₁₈H₁₉NO₃S: C, 65.63; H, 5.81; N, 4.25. Found: C, 65.67; H, 5.77; N, 4.41.

*N*₆-CsO: White solid (1.09 g, 66.05%). mp: 143 °C; ¹H NMR (400 MHz,CD₂Cl₂) δ 8.00-7.98 (dd, *J* = 8.0, 1.5 Hz, 2H, -ArH), 7.76-7.74 (dd, *J* = 8.0, 1.1 Hz, 2H, -ArH), 7.65-7.61(td, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.52-7.48 (td, *J* = 8.0, 1.1 Hz, 2H, -ArH), 2.60-2.56 (t, *J* = 8.0, Hz, 2H, -CH₂-), 1.66-1.59 (m, 2H, -CH₂-), 1.24-1.22 (m, 6H, -CH₂-), 0.86 - 0.82 (t, *J* = 8.0, Hz, 3H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 171.85, 140.43,135.46, 132.95, 128.06, 127.53, 124.18, 35.62, 31.85, 29.03, 25.42, 22.83, 14.15. MS (ESI), m/z: [M+H]⁺ calcd for C₁₉H₂₂NO₃S, 344.4 found: 344.1. Anal. Cacld for C₁₉H₂₁NO₃S: C, 66.45; H, 6.16; N, 4.08. Found: C, 66.48; H, 6.17; N, 4.23.

*N*₇-**CsO:** White solid (1.62 g, 64.07%). mp: 136°C; ¹H NMR (400 MHz,CD₂Cl₂) δ 8.00-7.98(dd, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.76-7.74 (dd, *J* = 8.0, 1.1 Hz, 2H, -ArH), 7.65-7.61 (td, *J* = 8.0, 1.6 Hz, 2H, -ArH), 7.52-7.48 (td, *J* = 8.0, 1.1 Hz, 2H, -ArH), 2.60 - 2.56 (t, *J* = 8.0, Hz, 2H, -CH₂-), 1.66-1.59 (m, 2H, -CH₂-), 1.26-1.20 (m, 8H, -CH₂-), 0.86-0.83 (t, *J* = 8.0, Hz, 3H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 171.86, 140.43, 135.46, 132.95, 128.06, 127.53, 124.17, 35.61, 32.00, 29.32, 25.46, 22.97, 14.21. MS (ESI), m/z: [M+H]⁺ calcd for C₂₀H₂₄NO₃S, 358.5 found: 358.1. Anal. Cacld for C₂₀H₂₃NO₃S: C, 67.20; H, 6.49; N, 3.92. Found: C, 67.20; H, 6.46; N, 3.94.

1.4 Bioimaging experiment

Preparation of nanoparticles

 C_6 -CsO (or C_4 -CsO, N_3 -CsO) crystal (1 mg) and PEG-b-PPG-b-PEG (F127) (10 mg) were dissolved into THF solution (1.0 mL). Then THF was removed with a gentle nitrogen flow. The deionized water (3.0 mL) was added and the mixture was sonicated by a microtip-equipped probe sonicator (Scientz-IID) for 20 min. The generated nanoparticle solution (about 0.33 mg/mL) was stored in dark at low temperature.

In vitro phosphorescent imaging of nanoparticles

The phosphorescent intensities of nanoparticles were measured on an IVIS® imaging system after nanoparticles were irradiated using an UV lamp (365 nm) for 30 s. The IVIS system was set in bioluminescence mode with open filter setting (exposure time: 10 s).

In vivo phosphorescent imaging

The healthy nude mice were anesthetized by 2 % isoflurane in oxygen and placed into the box of IVIS instrument. Then, 50 μ L prepared nanoparticles were injected into the mice, which was irradiated by a UV lamp (365 nm) for 30 s. Then the phosphorescent bioimaging were acquired using IVIS instrument in bioluminescence mode with open filter setting (exposure time: 10 s) after the light excitation was stopped.

Phosphorescent imaging of lymph node

10 / 40

The prepared nanoparticles (50 μ L) were injected into the forepaws of live mice. After 2 h post-injection, the mice were irradiated by a handheld UV lamp (365 nm) for 30 s and then imaged with IVIS instrument in bioluminescence mode with open filter setting (exposure time: 10 s) after the light excitation was stopped.

Cytotoxicity Assay

In vitro cytotoxicity of the C_4 -CsO NPs, C_6 -CsO NPs and N_3 -CsO NPs against HeLa cells were evaluated by cell counting kit-8 (CCK-8) assay (HY-K0301, MEDCHEMEXPRESS). Briefly, HeLa cells were seeded in 96-well plates with 1×10^4 cells per well. Then, cells were exposed to each kind of nanoparticles at the concentrations of 6.25, 12.5, 25, 50, 100 µg/mL⁻¹, respectively, at 37 °C, 5% CO₂. After 24 h incubation, the wells were washed twice with $1 \times PBS$. The culture medium diluted 1:10 with CCK-8 assay was added 110 µL into each well and incubated for another 4 hours. Then the mediums were transferred to a new 96-well cell culture plate and the absorbance was measured by a microplate reader scanning at 450 nm.

2. Additional data and spectra

Figure S2. ¹³C NMR spectrum of C_3 -CsO.

Figure S6. ¹³C NMR spectrum of C_5 -CsO.

Figure S8. ¹³C NMR spectrum of C_6 -CsO.

Figure S12. ¹³C NMR spectrum of N_3 -CsO.

Figure S14. ¹³C NMR spectrum of N_4 -CsO.

Figure S18. ¹³C NMR spectrum of *N*₆-CsO.

Figure S20. ¹³C NMR spectrum of N_7 -CsO.

Figure S21. HPLC curves of C_n -C_SO compounds.

Figure S22. HPLC curves of *N*_n-C_SO compounds.

Figure S23. The phosphorescence photographs of N_n -C_SO (a) and C_n -C_SO crystals (b) taken at UV (365 nm) on and off at room-temperature.

Figure S24 Absorption spectra of (a) N_n -C_SO and (b) C_n -C_SO series in dichloromethane solution (concentration: 20 μ M).

Figure S25 PL spectra of (a) N_n -C_SO and (b) C_n -C_SO series (1 wt%) doped in PMMA films at room temperture (λ_{ex} : 280 nm).

Figure S26 Phosphorescence spectra of N_n -C_SO and C_n -C_SO series (1 wt%) doped in PMMA films at 77 K (λ_{ex} : 305 nm).

Figure S27 PL spectra of (a) N_n -C_SO and (b) C_n -C_SO crystals at room temperature.

Figure S28 Phosphorescence spectra of N₄-C_SO, N₅-C_SO, N₆-C_SO and N₇-C_SO crystals at room temperature.

Figure S29 Phosphorescence spectra of (a) N_n -C_SO and (b) C_n -C_SO powders at room temperature (λ_{ex} : 365 nm).

Figure S30. The phosphorescence photographs of (a) N_n -C_SO and (b) C_n -C_SO powders taken at UV (365 nm) on and off at room-temperature.

Figure S31 XRD patterns in different states for (a) N_n-C_sO and (b)C_n-C_sO series.

Figure S32 The melting points of C_n -C_SO (Top) and N_n -C_SO (Bottom).

	Table 55 Photophysical data of C _n -C _S O compounds.								
Sampla	$\lambda_{abs}{}^a$	$\lambda_{PL}{}^{b}$	$\lambda_{Phos.}^{c}$	$\lambda_{PL}{}^d$	$\lambda_{Phos.}{}^{d}$	$ au_{ ext{Phos.}}$ d	${\boldsymbol{\varPhi}}_{\mathrm{PL}}^{\mathrm{d}}$		
Sample	(nm)	(nm)	(nm)	(nm)	(nm)	(ms)	(%)		
C ₃ -CsO	221, 295	329	402	391,484,515	489,515	453.63, 470.16	14.82		
C ₄ -CsO	222, 295	325	400	395,494,522	489,516	807.15, 808.05	27.63		
C ₅ -CsO	222, 296	324	395	392	403	51.96	9.02		
C $C_{2}O$	220, 202	220	200	220	106 171 106	176.10, 1116.10,	11.26		
C6-CSU	220, 292	328	398	338	576 556 400,471,490	596 556 400,471	400,471,490	1180.42	11.30
C7-CsO	221, 294	326	398	379	409	60.75	42.83		

1 4 4 DI

a: Solution (20 μ M) at RT; b: Film at RT; c: Film at 77 K; d: Crystal at RT.

Sampla	$\lambda_{abs.}{}^{a}$	$\lambda_{PL}{}^b$	$\lambda_{Phos.}^{c}$	$\lambda_{PL}{}^d$	$\lambda_{Phos.}{}^{d}$	$ au_{ ext{Phos.}}{}^{ ext{d}}$	${\it I}\!$
Sample	(nm)	(nm)	(nm)	(nm)	(nm)	(ms)	(%)
N3-	222 201	227	405	200 401 510	496 515	0.62.04.080.06	10.19
CsO	222, 291	327	405	390, 491, 519	480, 515	962.04, 989.06	10.18
N4-	221 202	226	200	251	417 471	05 78 240 42	1 5 1
CsO	221, 292	520	399	551	41/,4/1	95.78, 249.45	4.34
N5-	221 202	224	207	220	129	0.27	7 00
CsO	221, 292	524	397	559	438	0.27	1.02
N_6 -	220, 202	205	206	229	450	0.74	5 97
CsO	220, 292	525	390	556	430	0.74	3.82
N7-	210, 202	224	400	242			676
CsO	219, 292	324	400	545		_	0./0

Table S4 Photophysical data of *N*_n-C_SO compounds.

Sample name	C ₃ -CsO	C4-CsO	C5-CsO	C ₆ -CsO	C7-CsO
CCDC Number	2123021	2123066	2123076	2123079	2123080
Formula	C ₁₆ H ₁₃ NO ₃ S	C ₁₇ H ₁₅ NO ₃ S	$C_{18}H_{17}NO_3S$	$C_{19}H_{19}NO_3S$	$C_{20}H_{21}NO_3S$
Wavelength (Å)	0.71073	1.34139	0.71073	0.71073	0.71073
Space Group	P21/c	P21/c	P21/n	P21/c	P21/n
Cell Lengths (Å)	a=13.992(2)	a=14.7399(9)	a=6.5733(12)	a=16.316(3)	a=6.7394(16)
	b=8.8276(14)	b=8.7025(5)	b=15.503(3)	b=8.9933(16)	b=16.651(4)
	c=11.4697(18	c=11.3772(7)	c=15.682(3)	c=11.873(2)	c=15.824(4)
)				
Cell Angles (°)	α=90	α=90	α=90	α=90	α=90
	β=93.099(2)	β=91.586(1)	β=99.411(3)	β=107.627(3)	β=98.498(4)
	γ=90	γ=90	γ=90	γ=90	γ=90
Cell Volume (Å ³)	1414.6(4)	1458.84(15)	1576.6(5)	1660.4(5)	1756.3(7)
Ζ	4	4	4	4	4
Density (g/cm ³)	1.406	1.427	1.379	1.366	1.344
F(000)	624.8	656.0	688.0	720.0	752.0
h _{max} , k _{max} , l _{max}	20,13,17	17,10,13	9,22,22	24,13,17	9,23,22

Table S5 Structural data of single crystals based on CsO-derivatives (C_3 -CsO — C_7 -CsO).

Sample name	N ₃ -CsO	N ₄ -CsO	N ₅ -CsO	N ₆ -CsO
CCDC Number	2123082	2123083	2123084	2123085
Formula	C ₁₆ H ₁₅ NO ₃ S	C ₁₇ H ₁₇ NO ₃ S	$C_{18}H_{19}NO_3S$	$C_{19}H_{21}NO_3S$
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Space Group	P21/c	Pbca	Pbca	P21/c
Cell Lengths (Å)	a=14.404(3)	a=8.855(2)	a=8.938(2)	a=17.879(10)
	b=8.8302(19)	b=11.597(3)	b=11.559(3)	b=8.882(5)
	c=11.556(3)	c=29.990(7)	c=32.801(8)	c=11.605(7)
Cell Angles (°)	α=90	α=90	α=90	α=90
	β=98.595(4)	β=90	β=90	β=103.340(11)
	γ=90	γ=90	γ=90	γ=90
Cell Volume (Å ³)	1453.3(5)	3079.7(12)	3388.7(14)	1793.1(18)
Z	4	8	8	4
Density (g/cm ³)	1.377	1.360	1.291	1.269
F(000)	632.0	1328.0	1392.0	724.0
h _{max} , k _{max} , l _{max}	21,13,17	11,14,37	11,14,41	22,11,14

Figure S33 Intermolecular interaction of dimers in single crystals.

Figure S34 (a) Intermolecular interactions formed by cycloalkyl (C_n) substituents as heads; (b) Intermolecular interactions formed by phenothiazine and carbonyl groups as tails.

Sample	С-НО (Å)	C-Hπ (Å)
C ₃ -CsO	2.856, 3.012, 3.334, 3.736, 3.774	3.304, 3.457
C ₄ -CsO	2.670, 2.979, 3.036, 3.071, 3.843, 3.897, 3.993	3.232, 3.548, 3.607, 3.880
C ₅ -CsO	2.893, 3.158, 3.599, 3.741, 3.986	3.264, 3.506, 3.745
C ₆ -CsO	2.552, 2.780, 3.251, 3.556, 3.613, 3.888	3.656, 3.928, 3.941
C ₇ -CsO	2.556, 3.676, 3.793, 3.867, 3.987	3.281, 3.488, 3.491, 3.701, 3.944, 3.945

Table S7 The detail data of intermolecular interactions formed by cycloalkyl (C_n) substituents as heads

Table S8 The detail data of intermolecular interactions formed by phenothiazine and carbonyl groups as tails.

Sample	C-HO (Å)	C-Hπ (Å)	ππ
			(Å)
C ₃ -CsO	2.478(2),2.599(2),2.631(2),2.789(2),2.799(2),2.842(2)	3.107(2),3.153(2),3.304,3.457,3.6	
	,2.856,2.881(2),2.967(2),3.012,3.077(2),3.257(2),3.27	51(2),3.733(2), 3.960(2)	
	7(2),3.334,3.575(2),3.702(2),3.736,3.774		
C ₄ -CsO	2.381(2),2.513(2),2.565(2),2.670,2.673(2),2.704(2),2.	3.056(2),3.078(2),3.232,3.548,3.5	
	712(2),2.859(2),2.943(2),2.979,3.036,3.071,3.085(2),3	73(2),3.607,3.792(2),3.880,3.995(
	.200(2),3.209(2),3.526(2),3.753(2),3.843,3.897,3.982(2)	
	2),3.993		
C ₅ -CsO	2.441(2),2.459(2),2.619(2),2.681(2),2.819(2),2.893,2.	2.918(2),3.264,3.321(2),3.506,3.7	3.770
	954(2),2.996(2),3.158,3.190(2),3.213(2),3.216(2),3.36	33(2),3.745,3.915(2), 3.928(2)	
	9(2),3.599,3.741,3.871(2),3.986		
C ₆ -CsO	2.552,2.582(2),2.611(2),2.772(2),2.799(2),2.780,2.856	3.024(2),3.279(2),3.470(2),3.650(
	(2),2.864(2),3.069(2),3.216,3.251,3.283(2),3.364(2),3.	2),3.656,3.722(2),3.928,3.941	
	551(2),3.556,3.613,3.641(2),3.666(2), 3.888		
C ₇ -CsO	2.520(2),2.556,2.570(2),2.575(2),2.793(2),2.895(2),2.	2.916(2),3.281,3.488,3.491,3.701,	3.692
	928(2),3.004(2),3.178(2),3.210(2),3.322(2),3.468(2),3	3.733(2),3.868(2),3.890(2),3.921(
	.676, 3.793, 3.867, 3.987, 3.997(2)	2), 3.944,3.945	

Figure S35 (a) Intermolecular interactions formed by alkyl (N_n) substituents as heads; (b) Intermolecular interactions formed by phenothiazine and carbonyl groups as tails.

Sample	С-НО (Å)	C-Hπ (Å)
N ₃ -CsO	2.713, 3.102, 3.302, 3.372, 3.457, 3.899, 3.971	3.055, 3.996
N ₄ -CsO	2,641, 2.736, 3.225, 3.574, 3.632, 3.845	3.538, 3.835
N ₅ -CsO	2.552, 2.707, 3.701, 3.745, 3.797, 3.995	3.640, 3.870
N ₆ -CsO	2.676, 3.101, 3.420, 3.902	3.385, 3.525, 3.565

Table S9 The detail data of intermolecular interactions formed by alkyl (N_n) substituents as heads

Table S10 The detail data of intermolecular interactions formed by phenothiazine and carbonyl groups as tails

Sample	С-НО (Å)	C-Hπ (Å)	
	2.511(2), 2.610(2), 2.646(2), 2.713, 2.749(2),	3.055, 3.105(2),	
	2.771(2), 2.812(2), 2.857(2), 2.987(2), 3.102,	3.155(2),	
N ₃ -CsO	3.121(2), 3.157(2), 3.302, 3.372, 3.426(2), 3.457,	3.686(2),	
	3.591(2), 3.644(2), 3.899, 3.971	3.703(2),	
		3.825(2), 3.996.	
	2.528(2), 2.554(2), 2.641, 2.652(2), 2.736,	3.091(2),	
	2.748(2), 2.762(2), 2.874(2), 2.946(2), 3.038(2),	3.180(2), 3.538,	
N ₄ -CsO	3.160(2), 3.178(2), 3.225, 3.465(2), 3.574,	3.684(2),	
	3.599(2), 3.632, 3.676(2), 3.845	3.692(2),	
		3.799(2), 3.835	
	2.552, 2.555(2), 2.573(2), 2.690(2), 2.707,	3.142(2),	
	2.768(2), 2.828(2), 2.859(2), 2.986(2), 3.003(2),	3.215(2), 3.640,	
N_5 -CsO	3.156(2), 3.194(2), 3.474(2), 3.606(2), 3.701,	3.696(2),	
	3.719(2), 3.745, 3.797, 3.995	3.744(2),	
		3.793(2), 3.870	
	2.525(2), 2.556(2), 2.562(2), 2.607(2), 2.676,	3.155(2),	
	2.739(2), 2.782(2), 2.854(2), 2.958(2), 3.067(2),	3.204(2), 3.385,	
N -CsO	3.101, 3.624(2), 3.702(2), 3.140(2), 3.166(2),	3.525, 3.565,	
11 ₆ -C3O	3.420, 3.902	3.717(2),	
		3.725(2),	
		3.788(2),	

C₃-CsO

C₄-CsO

C₅-CsO

C₆-CsO

C7-CsO

Figure S36 Molecular packing in C_n -CsO crystals along a, b and c axis.

Figure S37 Molecular packing in N_n -CsO crystals along a, b and c axis.

Figure S38 Intermolecular interactions in adjacent molecules in C₃-CsO crystal.

Figure S40 Intermolecular interactions in adjacent molecules in C5-CsO crystal.

Figure S41 Intermolecular interactions in adjacent molecules in C₆-CsO crystal.

Figure S42 Intermolecular interactions in adjacent molecules in C7-CsO crystal.

Figure S43 Intermolecular interactions in adjacent molecules in N₃-CsO crystal.

Figure S44 Intermolecular interactions in adjacent molecules in N₄-CsO crystal.

Figure S45 Intermolecular interactions in adjacent molecules in N₅-CsO crystal.

Figure S46 Intermolecular interactions in adjacent molecules in N₆-CsO crystal.

Figure S47 (a) The intramolecular interactions in C_n -CsO crystals; (b) The conformations of cycloalkyl moieties in C_n -CsO crystals.

Figure S48 The dihedral angles between two benzene rings in phenothiazine moiety.

Figure S49 Molecular packing as well as the distances with head-to-head and tail-to-tail arrangement among layers in C_n -CsO crystals.

Figure S50 Intermolecular coupling of C_n -CsO dimers in single crystals.

Compound	C ₃ -CSO	C ₄ -CsO	C ₅ -CsO	C ₆ -CsO	C ₇ -CsO
$\Delta \mathbf{E}_{st}(\mathbf{eV})$	0.3055	0.2332	0.6206	0.295	0.6490
S ₁ (eV)	3.9406	3.8093	4.2333	3.9214	4.3152
T ₁ (eV)	3.6351	3.5761	3.6127	3.6264	3.6662
T ₂ (eV)	3.6402	3.5808	3.6208	3.6279	3.6703
T ₃ (eV)	3.657	3.640	3.6516	3.6696	3.682
T ₄ (eV)	3.6606	3.6416	3.6555	3.6743	3.6822
T ₅ (eV)	3.9401	3.8108	4.0237	3.9194	4.0608
T ₆ (eV)	4.0237	3.9575	4.0399	3.9829	4.0694
T ₇ (eV)	4.0856	4.014	4.2332	4.0301	4.3077
T ₈ (eV)	4.2964	4.0597	4.2853	4.1116	4.3168
T ₉ (eV)		4.2135	4.3029	4.2452	4.3238
T ₁₀ (eV)			4.4311		4.4619
T ₁₂ (eV)			4.4324		4.4644
T ₁₃ (eV)			4.4645		4.4929
T ₁₄ (eV)			4.4664		4.4937
T ₁₅ (eV)			4.5125		4.5932
T ₁₆ (eV)					4.5951

Table S11 Energy levels of excited states of C_n -CSO dim	iers
---	------

Figure S51 (a) The schematic diagram of anti-counterfeiting application. The letters "WHU" (the acronyms of Wuhan University) and chinese characters "武汉大学" are written by a brush pen, in which the "WH" and "武汉" is written with C_4 -CsO in dichloromethane (DCM) solution as an ink, "U" and "大学" is written with C_6 -CsO in dichloromethane (DCM) solution as an ink; (b) The phosphorescence photographs of the letters "WHU" and chinese characters "武汉大学" were taken at UV (365 nm) on and off under room-temperature.

Figure S52 Cytotoxicity of C_4 -CsO NPs (a), C_6 -CsO NPs (b) and N_3 -CsO NPs (c) against HeLa cells. The HeLa cells were incubated with C_4 -CsO NPs, C_6 -CsO NPs and N_3 -CsO NPs at various concentrations for 24 h.

Figure S53 (a) The size distribution of organic nanoparticles based on C_4 -CsO; (b) phosphorescence image of C_4 -CsO NPs detected by IVIS instrument; The *in vivo* phosphorescence imaging of (c) subcutaneous tissue and (d) lymph node in living mice after injection of C_4 -CsO NPs. (power density of UV light: 50 mW/cm²)

Figure S54 (a) The size distribution of organic nanoparticles based on C_6 -CsO; (b) phosphorescence image of C_6 -CsO NPs detected by IVIS instrument; The *in vivo* phosphorescence imaging of (c) subcutaneous tissue and (d) lymph node in living mice after injection of C_6 -CsO NPs. (power density of UV light: 50 mW/cm²)

Figure S55 (a) The size distribution of organic nanoparticles based on N_3 -CsO; (b) phosphorescence image of N_3 -CsO NPs detected by IVIS instrument; The *in vivo* phosphorescence imaging of (c) subcutaneous tissue and (d) lymph node in living mice after injection of N_3 -CsO NPs. (power density of UV light: 50 mW/cm²)