Heteroatom-induced domain electrostatic potential difference in ZnIn₂S₄ nanosheets for efficient charge separation and boosted photocatalytic overall water splitting

Bojing Sun^{a†}, Dingge Fan^{a†}, Xiaoyu Chen^a, Zhenzi Li^b, Wei Zhou*^b, and Yunchen

Du*a

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

^b Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.

* Corresponding authors.

E-mail address: <u>yunchendu@hit.edu.cn</u>. (Y. Du); <u>zwchem@hotmail.com</u>. (W. Zhou).

Characterization

X-ray diffraction (XRD) measurements were performed by using the Bruker D8 Advance diffractometer by using Cu K α radiation (λ =1.5406 Å). The transmission electron microscopy (TEM) was obtained on a JEOL-2100 electron microscope (JEOL, Japan) with an acceleration voltage of 200 kV. Nitrogen adsorptiondesorption isotherms at 77 K were collected on an AUTOSORB-1 (Quantachrome Instruments) nitrogen adsorption apparatus. All samples were degassed under vacuum at 150 °C for at least 5 h before measurement. UV/vis adsorption spectra were conducted on a UV/vis spectrophotometer (Lambda 950 (PerkinElmer, USA)) in the range of 200-800 nm. X-ray photoelectron spectroscopy (XPS) (thermofisher escalab 250xi) was recorded to study the surface states. The luminescence lifetimes were detected with an Edinburgh FL-FS 920 fluorescence spectrophotometer with an excitation wavelength at 350 nm. The amount of Al doping was measured by Inductively Coupled Plasma (Optima 8300 (PerkinElmer, USA) ICP-OES). The photoluminescence (PL) spectra were measured by a PELS 55 spectrofluorophotometer with the excitation wavelength of 330 nm.

Fig. S1. (a) TEM and (b) HRTEM images of ZIS nanosheets.

Fig. S2. The corresponding height profiles of Al-ZIS nanosheets.

Fig. S3. (a) AFM image and (b) the corresponding height profiles of pure ZIS nanosheets.

Fig. S4. XPS spectra of full survey for ZIS and Al-ZIS nanosheets, respectively.

Fig. S5. The BET surface areas and pore volumes of ZIS and Al-ZIS nanosheets.

Fig. S6. UV-vis absorption spectra and corresponding bandgaps of ZIS and Al-ZIS nanosheets.

Fig. S7. XRD patterns of Al-ZIS nanosheets with different Al doping amounts.

Fig. S8. H_2 evolution rates of Al-ZIS nanosheets with different Al doping amounts.

Fig. S9. Photocatalytic H_2 and O_2 evolution of ZIS and Al-ZIS nanosheets under AM1.5G.

Fig. S10. Mott-Schottky plots of ZIS and Al-ZIS with different frequencies.

	Cell parameters (Å)				
Samples	а	b	с	V (Å ³)	Rp (%)
ZIS	3.7245533	3.7245533	26.2388867	315.22773	7.06
Al-ZIS	3.7816752	3.7816752	30.6091280	379.09674	7.51

Table S1. The lattice constants of ZIS and Al-ZIS nanosheets.

	Activity measurement			
Photocatalysts				Ref.
	H_2	O_2	Illumination	
	(µmol/g/h)	(µmol/g/h)		
L-NiCo double hydroxide	34.0	16.8	300 W Xe lamp	1
			(AM1.5)	
Ag- $ZnIn_2S_4$	56.6	29.1	300 W Xe lamp	2
			(>420 nm)	
TiO ₂ -ZnIn ₂ S ₄	214.9	81.7	300 W Xe lamp	3
			(full spectrum)	
Pt-ZnIn ₂ S ₄ /rGO/Co ₃ O ₄ -	24.5	11.9	300 W Xe lamp	4
BiVO ₄			(>420 nm)	
ZIS-WO/C-wood	169.2	82.5	300 W Xe lamp	5
			(AM 1.5G)	
MoS ₂ -CdS/WO ₃ -MnO ₂	0.5	0.26	300 W Xe lamp	6
			(>420 nm)	
PtS-ZnIn ₂ S ₄ /WO ₃ -MnO ₂	38.8	15.7	300 W Xe lamp	7
			(>420 nm)	
Single atom Ni/ Polymeric	26.7	24.0	300 W Xe lamp	8
carbon nitride		(H_2O_2)	(>420 nm)	
CoO atomic layers	4.4	2.6	300 W Xe lamp	9
-			(>420 nm)	
PtO _x /WN	0.9	0.48	300 W Xe lamp	10
			(>420 nm)	
Cu ₂ O	4.0	2.0	300 W Xe lamp	11
-			(>460 nm)	
Al-ZIS	77.2	35.3	300 W Xe lamp	This
			(>420 nm)	work

Table S2. Solar-driven overall water splitting performance of various photocatalysts

 in reported references.

	A	tomic concentration (pp	m)
Samples	Zn	In	Al
ZIS	8.21	42.38	0
Al-ZIS-1	7.46	41.03	0.27
Al-ZIS-2	8.13	42.29	0.48
Al-ZIS-3	8.60	43.53	0.59
Al-ZIS-4	8.27	42.51	0.77
Al-ZIS-5	8.16	41.38	1.58

Table S3. ICP-OES data for Al-ZIS with different amount of Al doping.

Samples	τ_{1} (ns)	τ_2 (ns)	A_1 (ns)	A_2 (ns)	$\tau_{av} (ns)$
ZIS	0.89	6.11	54.62	45.38	5.33
Al-ZIS	0.72	7.58	41.22	58.78	7.15

 Table S4. Parameters obtained from time-resolved PL decay curves according to a double-exponential decay.

References:

- Wang, M.; Wang, J. Q.; Xi, C. et al. A Hydrogen Deficient Nickel-Cobalt Double Hydroxide for Photocatalytic Overall Water Splitting. Angew. Chem. Int. Ed. 2020, 132 (28), 11607-11612.
- Pan, R.; Hu, M.; Liu, J. et al. Two-Dimensional All-in-One Sulfide Monolayers Driving Photocatalytic Overall Water Splitting, Nano Lett. 2021, 21, 6228-6236.
- Zuo, G.; Wang, Y.; Teo, W. L. et al. Direct Z-scheme TiO₂-ZnIn₂S₄ nanoflowers for cocatalyst-free photocatalytic water splitting, Appl. Catal. B-Environ. 2021, 291, 120126.
- Ou, M.; Li, J.; Geng, M. et al. Construction of Z-scheme Photocatalyst Containing ZnIn₂S₄, Co₃O₄-Photodeposited BiVO₄ (110) Facets and rGO Electron Mediator for Overall Water Splitting into H₂ and O₂, Catal. Lett. 2021, 151, 2570-2582.
- Wang, Y.; Huang, W.; Guo, S. et al. Sulfur-Deficient ZnIn₂S₄/Oxygen-Deficient WO₃ Hybrids with Carbon Layer Bridges as a Novel Photothermal/ Photocatalytic Integrated System for Z-Scheme Overall Water Splitting, Adv. Energy Mater. 2021, 11, 2102452.
- Wei, D.; Ding, Y.; Li, Z. Noble-metal-free Z-Scheme MoS₂-CdS/WO₃-MnO₂ nanocomposites for photocatalytic overall water splitting under visible light, Int. J. Hydrog. Energy 2020, 45, 17320-17328.
- Ding, Y.; Wei, D.; He, R. et al. Rational design of Z-scheme PtS-ZnIn₂S₄/WO₃-MnO₂ for overall photocatalytic water splitting under visible light, Appl. Catal. B-Environ. 2019, 258, 117948.
- 8. Li, Y.; Wang, Y.; Dong, C. et al. Single-atom nickel terminating sp² and sp³ nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting, Chem. Sci. 2021, 12, 3633-3643.
- Xu, J.; Li, X.; Ju, Z. et al. Visible-Light-Driven Overall Water Splitting Boosted by Tetrahedrally Coordinated Blende Cobalt (II) Oxide Atomic Layers. Angew. Chem. Int. Ed. 2019, 131, 3064-3068.
- Wang, Y.; Nie, T.; Li, Y. et al. Black Tungsten Nitride as a Metallic Photocatalyst for Overall Water Splitting Operable at up to 765 nm, Angew. Chem. Int. Ed. 2017, 56, 7430-7434.
- Hara, M.; Kondo, T.; Komoda, M. et al. Cu₂O as A Photocatalyst for Overall Water Splitting under Visible Light Irradiation. Chem. Commun. 1998, 357-358.