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Characterization

X-ray diffraction (XRD) measurements were performed by using the Bruker D8 

Advance diffractometer by using Cu Kα radiation (λ=1.5406 Å). The transmission 

electron microscopy (TEM) was obtained on a JEOL-2100 electron microscope 

(JEOL, Japan) with an acceleration voltage of 200 kV. Nitrogen adsorption-

desorption isotherms at 77 K were collected on an AUTOSORB-1 (Quantachrome 

Instruments) nitrogen adsorption apparatus. All samples were degassed under vacuum 

at 150 °C for at least 5 h before measurement. UV/vis adsorption spectra were 

conducted on a UV/vis spectrophotometer (Lambda 950 (PerkinElmer, USA)) in the 

range of 200-800 nm. X-ray photoelectron spectroscopy (XPS) (thermofisher escalab 

250xi) was recorded to study the surface states. The luminescence lifetimes were 

detected with an Edinburgh FL-FS 920 fluorescence spectrophotometer with an 

excitation wavelength at 350 nm. The amount of Al doping was measured by 

Inductively Coupled Plasma (Optima 8300 (PerkinElmer, USA) ICP-OES). The 

photoluminescence (PL) spectra were measured by a PELS 55 spectrofluoro-

photometer with the excitation wavelength of 330 nm. 



Fig. S1. (a) TEM and (b) HRTEM images of ZIS nanosheets. 



Fig. S2. The corresponding height profiles of Al-ZIS nanosheets.



Fig. S3. (a) AFM image and (b) the corresponding height profiles of pure ZIS 

nanosheets.



Fig. S4. XPS spectra of full survey for ZIS and Al-ZIS nanosheets, respectively.



Fig. S5. The BET surface areas and pore volumes of ZIS and Al-ZIS nanosheets.



Fig. S6. UV-vis absorption spectra and corresponding bandgaps of ZIS and Al-ZIS 

nanosheets.



Fig. S7. XRD patterns of Al-ZIS nanosheets with different Al doping amounts.



Fig. S8. H2 evolution rates of Al-ZIS nanosheets with different Al doping amounts.



Fig. S9. Photocatalytic H2 and O2 evolution of ZIS and Al-ZIS nanosheets under 

AM1.5G.



Fig. S10. Mott-Schottky plots of ZIS and Al-ZIS with different frequencies.



Table S1. The lattice constants of ZIS and Al-ZIS nanosheets.

Cell parameters (Å)

Samples a b c V (Å3) Rp (%)

ZIS 3.7245533 3.7245533 26.2388867 315.22773 7.06

Al-ZIS 3.7816752 3.7816752 30.6091280 379.09674 7.51



Table S2. Solar-driven overall water splitting performance of various photocatalysts 

in reported references. 

Activity measurement
Ref.Photocatalysts

H2

(μmol/g/h)
O2

(μmol/g/h)
Illumination

L-NiCo double hydroxide 34.0 16.8 300 W Xe lamp
(AM1.5)

1

Ag- ZnIn2S4 56.6 29.1 300 W Xe lamp
(>420 nm)

2

TiO2-ZnIn2S4 214.9 81.7 300 W Xe lamp
(full spectrum)

3

Pt-ZnIn2S4/rGO/Co3O4-
BiVO4

24.5 11.9 300 W Xe lamp
(>420 nm)

4

ZIS-WO/C-wood 169.2 82.5 300 W Xe lamp
(AM 1.5G)

5

MoS2-CdS/WO3-MnO2 0.5 0.26 300 W Xe lamp
(>420 nm)

6

PtS-ZnIn2S4/WO3-MnO2 38.8 15.7 300 W Xe lamp
(>420 nm)

7

Single atom Ni/ Polymeric 
carbon nitride

26.7 24.0
(H2O2)

300 W Xe lamp
(>420 nm)

8

CoO atomic layers 4.4 2.6 300 W Xe lamp
(>420 nm)

9

PtOx/WN 0.9 0.48 300 W Xe lamp
(>420 nm)

10

Cu2O 4.0 2.0 300 W Xe lamp
(>460 nm)

11

Al-ZIS 77.2 35.3 300 W Xe lamp
(>420 nm)

This 
work



Table S3. ICP-OES data for Al-ZIS with different amount of Al doping.

Atomic concentration (ppm)
Samples

Zn In Al

ZIS 8.21 42.38 0

Al-ZIS-1 7.46 41.03 0.27

Al-ZIS-2 8.13 42.29 0.48

Al-ZIS-3 8.60 43.53 0.59

Al-ZIS-4 8.27 42.51 0.77

Al-ZIS-5 8.16 41.38 1.58



Table S4. Parameters obtained from time-resolved PL decay curves according to a 

double-exponential decay.

Samples τ1 (ns) τ2 (ns) A1 (ns) A2 (ns) τav (ns)

ZIS 0.89 6.11 54.62 45.38 5.33

Al-ZIS 0.72 7.58 41.22 58.78 7.15
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