Solid-state synthesis of β -NaAlO₂ nanoflakes as an anode material for high-

performance sodium-ion battery

Lignesh Durai¹, Arthi Gopalakrishnan^{1†} and Sushmee Badhulika^{1*}

¹Department of Electrical Engineering, Indian Institute of Technology, Hyderabad,

502284, India.

*Corresponding author: E-mail: sbadh@iith.ac.in; Telephone: +040-23016467

† Equal contribution

Supplementary Information

Figure S1 EDX analysis of β-NaAlO₂ nanoflakes.

Figure S2 FTIR spectra of β-NaAlO₂ nanoflakes.

Cycle No.	$R_1(\Omega)$	$R_2(\Omega)$	CPE-T (F)	CPE-P
1	150.06	110.12	2.745e ⁻⁶	0.231
100	200.21	102.09	2.621e ⁻⁶	0.275

Table S1 EIS parameters of NaAlO₂ anode for 1st and 100th cycle

Figure S3 (a) Cyclic voltammetry curve of β -NaAlO₂ anode with different scan rates from 0.05 to 10 mV/s (b) corresponding linear calibration curve.