Supplementary Material

Carbon Nanotubes Reinforced Self-healable Polythiourethane with Excellent Bonding Strength and Improved Thermal Conductivity

Ji-yuan Shen¹, Wei Hu²,³*, Chang Sun¹, Shuo-ning Zhang³, Lan-ying Zhang³, Jin-ying Bao³, Yun-xiao Ren², Ya-ping Cao³, Rui Huang⁴, Hui Li⁴, Ji-wei Xiao¹*, Huai Yang²,³,⁵*

¹Department of applied mechanics, University of sciences and technology Beijing, Beijing 100083, China.
²Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
³School of Materials Science and Engineering, Peking University, Beijing 100871, China.
⁴Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of sciences and technology Beijing, Beijing 100083, China.
⁵Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China.

*These authors contributed equally to this work.

CONDUCT (corresponding authors' emails):

*Wei Hu: huwei@ustb.edu.cn; Ji-wei Xiao: jiujiiu@sas.ustb.edu.cn; Huai Yang: zhanglanying@pku.edu.cn
Figure S1. Testing of electro-mechanical universal testing machine and lap mode of the bonding samples.
Figure S2. The lap shear samples and tensile samples.

Preparation method of tensile samples: Take two bonded test specimens with surface treatment, the lap shear sample to be tested evenly in the areas of 10 mm × 10 mm, and fit the two. A 100 μm spacer was place in the gap to control the thickness. Finally, a heavy weight is placed above the specimen to ensure that the bonding surface is completely attached.

Figure S3. The test samples of DCB.
The strain energy release rate G_C was calculated using Eq. S1 for the 3M 2665, Locite 3542, 0 wt% and 0.3 wt% of the doping contents of the TMXDI-modified CNTs adhesive. Here, P is the applied load, b is the specimen width, C is the compliance of the specimen, and a is the crack length. The term C can be expressed as Eq. S2, where δ is the extension on the load line and P is the applied load.

\[
G_C = \frac{P^2 dC}{2bda}
\]
\text{(Eq. S1)}

\[
C = \frac{\delta}{P}
\]
\text{(Eq. S2)}
Figure S5. The report of mechanical properties test.

Figure S6. Glass transition temperature (T_g) of samples with different contents.
Figure S7. The optical performance test samples.