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Experimental

Preparation of Pt/KB-OS. 

First, 10 mg KB powder, 15 mg K2PtCl6 and 5 mg sucrose were ground in a mortar for 30 min until 

mixed evenly, and then transferred to a quartz bottle. Then placed in a household microwave oven and 

reacted for 40 s with a power of 700 W. The obtained sample was denoted as Pt0.6/KB-OS5-40. What’s more, 

Ptx/KB-OS5-40 samples with different amount of Pt added were synthesized by the same method except for 

changing the addition amount of Pt precursor (x=0.4, 0.6, 0.8, which means added 40%, 60% and 80% Pt 

precursor) By adjusting the type and amount of functional group precursor (y = S5, S20, M5, T5, F5, C5, 

where S is sucrose, M is melamine, T is thiourea, F is fructose and C is cellulose.), Pt0.6/KB-OF5-40, Pt0.6/KB-

OS5-40, Pt0.6/KB-OC5-40, Pt0.6/KB-OM5-40, Pt0.6/KB-OT5-40 were obtained. The catalyst when sucrose is 

added at 0 is denoted Pt0.6/KB-40. By adjusting the reaction time (20 s, 40 s and 60 s), Pt0.6/KB-OS5-20, 

Pt0.6/KB-OS5-40 and Pt0.6/KB-OS5-60 were obtained.

Preparation of Pt0.6/CNT-OS5-40 and Pt0.6/rGO-OS5-40.

First, 10 mg of MWCNT, 15 mg K2PtCl6 and 5 mg sucrose were ground in a mortar for 30 min until 

the mixture was evenly mixed. Then the mixture was transferred to a quartz bottle and reacted for 40 s with 

a power of 700 W. The material obtained was named as Pt0.6/CNT-OS5-40. Pt0.6/rGO-OS5-40 was synthesized 

by the same method except for changing the MWCNT to rGO.

Preparation of Pd0.6/KB-OS5-40 and Ru0.6/KB-OS5-40.

The synthesis method of Pd0.6/KB-OS5-40 and Ru0.6/KB-OS5-40 is the same as that of Pt0.6/KB-OS5-40, 

except that PdCl2 and RuCl3 replace K2PtCl6 respectively.
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Electrochemical measurements. 

Electrochemical characterization was carried out in a conventional three-electrode cell of a CHI-760E 

Electrochemical Workstation (Shanghai Chenhua Instrument Corporation, China) at room temperature. 

Ag/AgCl electrode and carbon rod were used as reference electrode and counter electrode respectively. All 

potentials were calibrated vs reversible hydrogen electrode (RHE) using the equation:

ERHE = EAg/AgCl +0.059 pH+E0
Ag/AgCl

Where ERHE is the potential vs. RHE, EAg/AgCl is the experimentally measured potential against the 

Ag/AgCl reference electrode, and E0
Ag/AgCl is the standard potential of Ag/AgCl at 25 ℃ (0.199 V).

The glassy carbon electrode (GCE, diameter: 3 mm, area: 0.07065 cm2) was used as the working electrode. 

Catalyst ink was prepared by suspending 5 mg of catalyst powder in a 1 mL solution consisting of 5 wt% 

Nafion and ethanol (v: v=1:100). The catalyst ink obtained was supersonic treated for 30 minutes in room 

temperature in order to disperse evenly. Prior to dipping into the ink, the GCE was polished by Al2O3 powder 

to clean the surface. In a N2-saturated 0.5 M H2SO4 solution, Linear sweep voltammetry (LSV) was carried 

out at a sweep rate of 5 mV s-1. All catalysts need to be cyclic voltammetry (CV) activated before LSV 

testing. All polarization curves were corrected for 95% iR. The durability test was in 0.5 M H2SO4 solution 

using chronoamperometry. The ECSA can be derived using the formula: ECSA = Sgeo *Cdl/Cs via Cdl, 

wherein, Cs is the specific electrochemical double layer capacitance, its value in acidic environments is 0.040 

mF cm-2, and S is the geometric surface area of the working electrode. The electrochemical impedance 

spectroscopy (EIS) measurement was performed over a frequency range of 0.1 Hz to 100 kHz.
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Supplementary Figures and Tables

Figure S1. Photograph of catalyst yield after increasing the amount of reactants.
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Figure S2. (a), (b) HAADF-STEM images for the Pt0.6/KB-OS5-40 at other regions and (c), (d) 
corresponding size distributions for the Pt0.6/KB-OS5-40.
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Figure S3. High-resolution Pt 4f XPS spectrum for Pt0.6/KB-OS5-40.

Figure S4. FTIR spectra of (a) Pt0.6/KB-NM5-40 and (b) Pt0.6/KB-ST5-40.
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Figure S5. HRTEM images of (a) Pt0.6/KB-NM5-40 and (b) Pt0.6/KB-ST5-40.

Figure S6. Corresponding size distributions for the (c) Pt0.6/KB-NM5-40 and (d) Pt0.6/KB-ST5-40.
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Figure S7. (a) LSV curves of Pt0.6/KB-OS5-40, Pt0.6/KB-NM5-40, Pt0.6/KB-ST5-40 and Pt0.6/KB-40 in a N2-
saturated 0.5 M H2SO4. (b) Comparison η10 of Pt0.6/KB-OS5-40, Pt0.6/KB-NM5-40, Pt0.6/KB-ST5-40 and 
Pt0.6/KB-40.

Figure S8. FTIR spectra of (a) Pt0.6/KB-OF5-40 and (b) Pt0.6/KB-OC5-40.
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Figure S9. XPS spectra of Pt0.6/KB-OF5-40, Pt0.6/KB-OF5-40 and Pt0.6/KB-OC5-40.
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Figure S10. (a) HAADF-STEM image and (b) corresponding size distributions for Pt0.6/KB-OF5-40. (c) 
HAADF-STEM image and (d) corresponding size distributions for Pt0.6/KB-OC5-40.



S11

Figure S11. (a) LSV curves of Pt0.6/KB-OC5-40, Pt0.6/KB-OS5-40, Pt0.6/KB-OF5-40 and commercial Pt/C 
in a N2-saturated 0.5 M H2SO4. (b) Comparison η10 of Pt0.6/KB-OC5-40, Pt0.6/KB-OS5-40, Pt0.6/KB-OF5-40 
and commercial Pt/C. (c) LSV curves with the current density normalized to the Pt mass. (d) The mass 
activity of Pt0.6/KB-OC5-40, Pt0.6/KB-OS5-40, Pt0.6/KB-OF5-40 and commercial Pt/C at the overpotential of 
50 mV.
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Figure S12. HRTEM image of Pt0.6/KB-OS20-40.
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Figure S13. (a) LSV curves of Pt0.6/KB-40, Pt0.6/KB-OS5-40 and Pt0.6/KB-OS20-40 in 0.5 M H2SO4. (b) 
Comparison η10 of Pt0.6/KB-40, Pt0.6/KB-OS5-40 and Pt0.6/KB-OS20-40. (c) LSV curves of the HER with the 
current density normalized to the Pt mass. (d) The mass activity of Pt0.6/KB-40, Pt0.6/KB-OS5-40 and 
Pt0.6/KB-OS20-40 when the overpotential is 50 mV.
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Figure S14. (a) HRTEM and (b) corresponding size distributions for Pt0.6/KB-OS5-20. (c) HRTEM and (d) 
corresponding size corresponding size distributions for Pt0.6/KB-OS5-60.
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Figure S15. (a) LSV curves of Pt0.6/KB-OS5-20, Pt0.6/KB-OS5-40 and Pt0.6/KB-OS5-60 in a N2-saturated in 
0.5 M H2SO4. (b) Comparison η10 of Pt0.6/KB-OS5-20, Pt0.6/KB-OS5-40 and Pt0.6/KB-OS5-60. (c) LSV curves 
of the HER with the current density normalized to the Pt mass. (d) The mass activity of Pt0.6/KB-OS5-20, 
Pt0.6/KB-OS5-40 and Pt0.6/KB-OS5-60 when the overpotential is 50 mV.
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Figure S16. The HRTEM images of (a) Pd0.6/KB-OS5-40 and (b) Ru0.6/KB-OS5-40. Corresponding size 
distributions for the (c) Pd0.6/KB-OS5-40 and (d) Ru0.6/KB-OS5-40.
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Figure S17. (a) High-resolution Ru 3p XPS spectrum for Ru0.6/KB-OS5-40. (b) High-resolution Pd 3d XPS 
spectrum for Pd0.6/KB-OS5-40.

Figure S18. (a) LSV curves of Pt0.6/KB-OS5-40, Pd0.6/KB-OS5-40 and Ru0.6/KB-OS5-40 in 0.5 M H2SO4. (b) 
Comparison of η10 of Pt0.6/KB-OS5-40, Pd0.6/KB-OS5-40 and Ru0.6/KB-OS5-40.
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Figure S19. CV curves measured at different scan rates from 20 to 100 mV s-1 in 0.5 M H2SO4 for (a) 
Pt0.6/KB-OS5-40, (b) Pd0.6/KB-OS5-40 and (c) Ru0.6/KB-OS5-40. (d) Capacitive current at middle potential of 
CV curves as function of scan rates for Pt0.6/KB-OS5-40, Pd0.6/KB-OS5-40 and Ru0.6/KB-OS5-40.
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Figure S20. Estimation of the ECSA of Pt0.6/KB-OS5-40, Pd0.6/KB-OS5-40 and Ru0.6/KB-OS5-40.

Figure S21. Exchange current density of Pt0.6/KB-OS5-40, Pd0.6/KB-OS5-40 and Ru0.6/KB-OS5-40.
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Figure S22. The HAADF-STEM images of (a) Pt0.6/CNT-OS5-40 and (b) Pt0.6/rGO-OS5-40. Corresponding 
size distributions for the (c) Pt0.6/CNT-OS5-40 and (d) Pt0.6/rGO-OS5-40.

Figure S23. (a) LSV curves of Pt0.6/CNT-OS5-40, Pt0.6/KB-OS5-40 and Pt0.6/rGO-OS5-40 in 0.5 M H2SO4. 
(b) Comparison of η10 of Pt0.6/CNT-OS5-40, Pt0.6/KB-OS5-40 and Pt0.6/rGO-OS5-40.
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Figure S24. (a) LSV of HER of Pt0.6/KB-OS5-40 before and after 10,000 CV cycles. The current-time (i-t) 
curve of Pt0.6/KB-OS5-40 under the temporal evolution of the potential required to maintain (b)10 mA cm-2, 
(c) 100 mA cm-2 and (d) 200 mA cm-2.
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Figure S25. The HRTEM images of Pt0.6/KB-OS5-40 after ADT test in 0.5 M H2SO4.

Figure S26. Corresponding size distributions for the Pt0.6/KB-OS5-40 after ADT test.
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Figure S27. High-resolution Pt 4f XPS spectrum for Pt0.6/KB-OS5-40 after stability test.
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Table S1. Mass fraction of different Pt/KB-S.

Material Metal loading (wt%)

Pt0.6/KB-OS5-40 47.1

Pt0.4/KB-OS5-40 28.2

Pt0.8/KB-OS5-40 48.2

Pt0.6/KB-OS5-20 28.5

Pt0.6/KB-OS5-60 40.0

Pt0.6/KB-40 12.3

Pt0.6/KB-OS20-40 49.8

Table S2. Metal loading of different functional groups, noble metals and carbon supports.

Material Metal loading (wt%)

Pt0.6/KB-NM5-40 33.2

Pt0.6/KB-ST5-40 35.7

Pt0.6/KB-OF5-40 36.2

Pt0.6/KB-OC5-40 29.6

Pd0.6/KB-OS5-40 38.9

Ru0.6/KB-OS5-40 41.5

Pt0.6/CNT-OS5-40 40.7

Pt0.6/rGO-OS5-40 41.8
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Table S3. HER performance of Pt0.6/KB-OS5-40 and other reported Pt-based catalysts in acidic medium.

Samples
Overpotential 

(mV@ mA cm-2)

Pt 

loading 

(wt%)

Mass 

activity (A/mg@ 

overpotential) 

Tafel 

slope (mV 

dec-1)

Referenc

es

Pt0.6/KB-OS5-40 22@10 47.1% 27.3@50 mV 21.9 this work

Pt-AC/DG 41@10 1.0% 15.6@50 mV 28 1

Pt/SWCNT-400 27@10 19.4% 1.1@50 mV 38 2

Pt1/hNCNC 15@10 0.3% 7.6@20 mV 28 3

Pt1/NPC 25@10 0.3% 2.9@25 mV 28 4

Pt/CNTs-ECR 34@10 0.2% 65@50 mV 26 5

Pt1/MoO3-x/C 23@10 2.0% 3.5@25 mV 28 6

PtCoFe@CN 45@10 1.3% 1.4@50mV --- 7

ALD50Pt/NGNs 41@10 1.6% 10.1@50 mV --- 8

Pt@NHPCP 57@10 0.2% 5.0@50 mV --- 9

PtOx/TiO2 --- 1.4% 15@50 mV 31 10

Pt@PCM 19@10 0.1% --- 63.7 11

Mo2TiC2Tx-PtSA 15@10 2.4% 1.3@10 mV 30 12

Pt-graphdiyne 66@100 0.9% 2.3@100 mV 47 13

PtOx/TiO2 --- 1.4% 8.7@50 mV 40 10

MoS2@Pt 70@10 3.4% 4.1@10 mV 36 14

Pt1/MoO3-x/C 23@10 4.1% --- 29 6

Pt-MoS2 53@10 5.3% 2.0@10 mV 40 15

WC@C@Pt 30@10 13.9% 0.4@10 mV 26 16

Pt-CNSs/rGO 75@10 15.8% 0.9@10 mV 29 17

PtNiCu 25@10 10.7% 0.5@10 mV 28 18

Pt66Ni34 

nanoflowers
43@10 4.0% 0.3@10 mV 33 19

Pt/MoS2 86@10 1.3% 1.3@10 mV 52 20

Pt2.6Co1 

nanoflowers
40@10 15.0% 0.3@10 mV 42 21
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