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Experimental

Preparation of Pt/KB-Os.

First, 10 mg KB powder, 15 mg K,PtCls and 5 mg sucrose were ground in a mortar for 30 min until
mixed evenly, and then transferred to a quartz bottle. Then placed in a household microwave oven and
reacted for 40 s with a power of 700 W. The obtained sample was denoted as Pty s/ KB-Og5-40. What’s more,
Pt,/KB-Ogs5-40 samples with different amount of Pt added were synthesized by the same method except for
changing the addition amount of Pt precursor (x=0.4, 0.6, 0.8, which means added 40%, 60% and 80% Pt
precursor) By adjusting the type and amount of functional group precursor (y = S5, S20, M5, TS5, F5, C5,
where S is sucrose, M is melamine, T is thiourea, F is fructose and C is cellulose.), Pty ¢/KB-Ops-40, Pty ¢/ KB-
Os5-40, Pty s/KB-O¢s-40, Pty ¢/KB-Op\5-40, Pty s/KB-Ors-40 were obtained. The catalyst when sucrose is
added at 0 is denoted Ptys/KB-40. By adjusting the reaction time (20 s, 40 s and 60 s), Pty ¢/KB-Oss5-20,

Pt /KB-0g5-40 and Pt ¢/ KB-Og5-60 were obtained.

Preparation of Pty ¢/CNT-Og5-40 and Pt ¢/rGO-Ogs-40.

First, 10 mg of MWCNT, 15 mg K,PtCls and 5 mg sucrose were ground in a mortar for 30 min until
the mixture was evenly mixed. Then the mixture was transferred to a quartz bottle and reacted for 40 s with
a power of 700 W. The material obtained was named as Pty ¢/ CNT-Ogs-40. Pt; /rGO-Og5-40 was synthesized

by the same method except for changing the MWCNT to rGO.

Preparation of Pd;¢/KB-Ogs-40 and Rug ¢/ KB-Ogs-40.

The synthesis method of Pdj ¢/KB-Og5-40 and Ru, ¢/KB-Ogs5-40 is the same as that of Pty s/KB-Ogs-40,

except that PAdCl, and RuCl; replace K,PtClg respectively.
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Electrochemical measurements.

Electrochemical characterization was carried out in a conventional three-electrode cell of a CHI-760E
Electrochemical Workstation (Shanghai Chenhua Instrument Corporation, China) at room temperature.
Ag/AgCl electrode and carbon rod were used as reference electrode and counter electrode respectively. All

potentials were calibrated vs reversible hydrogen electrode (RHE) using the equation:
Erie = Eagiager 10.059 pH+E% g/agci

Where Egpg 1s the potential vs. RHE, Exgaeci 18 the experimentally measured potential against the
Ag/AgCl reference electrode, and E%/a,ci s the standard potential of Ag/AgCl at 25 °C (0.199 V).

The glassy carbon electrode (GCE, diameter: 3 mm, area: 0.07065 cm?) was used as the working electrode.
Catalyst ink was prepared by suspending 5 mg of catalyst powder in a 1 mL solution consisting of 5 wt%
Nafion and ethanol (v: v=1:100). The catalyst ink obtained was supersonic treated for 30 minutes in room
temperature in order to disperse evenly. Prior to dipping into the ink, the GCE was polished by Al,O; powder
to clean the surface. In a N,-saturated 0.5 M H,SO, solution, Linear sweep voltammetry (LSV) was carried
out at a sweep rate of 5 mV s''. All catalysts need to be cyclic voltammetry (CV) activated before LSV
testing. All polarization curves were corrected for 95% iR. The durability test was in 0.5 M H,SO, solution
using chronoamperometry. The ECSA can be derived using the formula: ECSA = S, *Ca/Cs via Cyj,
wherein, C; is the specific electrochemical double layer capacitance, its value in acidic environments is 0.040
mF c¢cm2, and S is the geometric surface area of the working electrode. The electrochemical impedance

spectroscopy (EIS) measurement was performed over a frequency range of 0.1 Hz to 100 kHz.
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Supplementary Figures and Tables
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Figure S1. Photogréiﬁh of catalyst yield after increasing the amount of reactants.
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Figure S2. (a), (b) HAADF-STEM images for the Pt;¢/KB-Og5-40 at other regions and (c), (d)
corresponding size distributions for the Pty ¢/ KB-Ogs-40.
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Figure S3. High-resolution Pt 4f XPS spectrum for Pty /KB-Ogs-40.

7L

" melamine b I v thiourea
= :
i : = : 5-S |
Pt IKB-N_ 40 S CHzs- :
é 0.6 M5 : c i :
c=N | icN 8 C=N .\ Pt /KB-S_-40
i KB £
2 KB
O-H E O-H
|—
Ll L\ I,l', T L \ T ll’!’ T L 4
4000 3000 1500 1000 500 4000 3000 1500 1000 500

Wave number (cm™) Wave number (cm™)

Figure S4. FTIR spectra of (a) Pty ¢/KB-Ny5-40 and (b) Pty ¢/KB-Sts-40.
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Figure S6. Corresponding size distributions for the (c¢) Pty ¢/KB-Ny5-40 and (d) Pt /KB-S15-40.
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Figure S8. FTIR spectra of (a) Pty ¢/KB-Ogs-40 and (b) Pty ¢/KB-O¢s5-40.
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Figure S9. XPS spectra of Pty ¢/KB-Ogs-40, Pty «/KB-Ogs-40 and Pt ¢/KB-O¢s-40.
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Figure S10. (a) HAADF-STEM image and (b) corresponding size distributions for Pty ¢/KB-Ogs-40. (c)
HAADF-STEM image and (d) corresponding size distributions for Pty ¢/KB-O¢s-40.
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Figure S12. HRTEM image of Pt ¢/KB-Og;0-40.
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Figure S13. (a) LSV curves of Pt0.6/KB-40, Pt0.6/KB—Os5—4O and Ptobé/KB—Oszo-40 in 0.5 M HzSO4. (b)
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Pt ¢/KB-Os;0-40 when the overpotential is 50 mV.
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Figure S14. (a) HRTEM and (b) corresponding size distributions for Pt; /KB-Ogs-20. (¢) HRTEM and (d)
corresponding size corresponding size distributions for Pty ¢/KB-Og3-60.
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Figure S16. The HRTEM images of (a) Pdy¢/KB-Ogs5-40 and (b) Rug¢/KB-Ogs-40. Corresponding size
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Figure S17. (a) High-resolution Ru 3p XPS spectrum for Ruj ¢/KB-Oss-40. (b) High-resolution Pd 3d XPS
spectrum for Pdy ¢/KB-Ogs-40.
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Figure S22. The HAADF-STEM images of (a) Pty /CNT-Oss-40 and (b) Pt; ¢/rGO-Ogs-40. Corresponding
size distributions for the (¢) Pty /CNT-Ogs5-40 and (d) Pty ¢/rGO-Ogs5-40.
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Figure S25. The HRTEM images of Pt; /KB-Ogs-40 after ADT test in 0.5 M H,SO,.
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Figure S26. Corresponding size distributions for the Pty s/KB-Ogs-40 after ADT test.
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Table S1. Mass fraction of different Pt/KB-S.

Material Metal loading (wt%)
Pty ¢/KB-Os5-40 47.1
Pty.4/KB-Ogs5-40 28.2
Pt ¢/KB-Os5-40 48.2
Pty ¢/KB-Os5-20 28.5
Pty.¢/KB-Ogs5-60 40.0

Pt ¢/KB-40 12.3
Pty ¢/KB-Og;0-40 49.8

Table S2. Metal loading of different functional groups, noble metals and carbon supports.

Material Metal loading (wt%)
Pty ¢/KB-Ny5-40 33.2
Pty ¢/KB-St5-40 35.7
Pty.¢/KB-Ofs5-40 36.2
Pty.¢/KB-O¢5-40 29.6
Pdj «/KB-Ogs-40 38.9
Rug ¢/KB-Og5-40 41.5
Pty.¢/ CNT-Ogs-40 40.7
Pty.¢/rTGO-0g5-40 41.8

S24



Table S3. HER performance of Pt; (/KB-Oss-40 and other reported Pt-based catalysts in acidic medium.

. Pt Mass Tafel
Overpotential ) Referenc
Samples (V@ mA em) loading activity (A/mg@ slope (mV o
(wt) overpotential) dec”)
Pt ¢/KB-Oss5-40 22@10 47.1% 27.3@50 mV 21.9 this work
Pt-AC/DG 41@10 1.0% 15.6@50 mV 28 1
Pt/SWCNT-400 27@10 19.4% 1.1@50 mV 38 2
Pt;/hNCNC 15@10 0.3% 7.6@20 mV 28 3
Pt;/NPC 25@10 0.3% 2.9@25 mV 28 4
Pt/CNTs-ECR 34@10 0.2% 65@50 mV 26 5
Pt;/M00;_,/C 23@10 2.0% 3.5@25 mV 28 6
PtCoFe@CN 45@10 1.3% 1.4@50mV 7
ALDs,Pt/NGNs 41@10 1.6% 10.1@50 mV --- 8
Pt@NHPCP 57@10 0.2% 5.0@50 mV --- 9
PtO,/TiO, --- 1.4% 15@50 mV 31 10
Pt@PCM 19@10 0.1% - 63.7 11
Mo, TiC,T,-Pts, 15@10 2.4% 1.3@10 mV 30 12
Pt-graphdiyne 66@100 0.9% 23@100 mV 47 13
PtO,/TiO; --- 1.4% 8.7@50 mV 40 10
MoS,@Pt 70@10 3.4% 41@10 mV 36 14
Pt;/M00;_,/C 23@10 4.1% - 29 6
Pt-MoS, 53@10 5.3% 2.0@10 mV 40 15
WC@C@Pt 30@10 13.9% 0.4@10 mV 26 16
Pt-CNSs/rGO 75@10 15.8% 0.9@10 mV 29 17
PtNiCu 25@10 10.7% 0.5@10 mV 28 18
PtgsNisy
anoflowers 4310 4.0% 0.3@10 mV 33 19
Pt/MoS, 86@10 1.3% 1.3@10 mV 52 20
Pt, ¢Co,
40@10 15.0% 0.3@10 mV 42 21

nanoflowers
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