Supporting Information

[tert-butyl(diphenyl)silyl] trifluoromethanesulfonate acts as an effective additive for high-voltage lithium metal batteries

Hanxiao Zhou, ^{a, b} Tianhui Li, ^{a, b} Wenjing Liu, ^{a, b} Zhihao Guo, ^{a, b} Yuxuan Guo, ^{a, b} Jingjing Gao, ^{a,}

^b Meizhen Qu, ^{a, b} Huan Zhang, ^{*, a, b} Gongchang Peng, ^{*, a, b}

^a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

Figure S1 The polarization voltage changes of Li||Li symmetric batteries at 1mA cm⁻² and 1mAh cm⁻² with 0.3%, 0.1% and 0.05% TB, respectively. (a) long cycle performance. the enlarged views of different cycles (b) 60th-61st and (c) 99th -100th.

Figure S2 CV curves of the first to 5th cycles in NCM622||Li batteries using (a) the blank electrolyte and (b) the 0.1% TB electrolyte, respectively.

Figure S3 Chronoamperometric responses of NCM422||Li batteries with different electrolytes.

Figure S4 Cycling performance of NCM622||Li batteries with different electrolytes at 45°C at 2 C.

Figure S5 Cross-sectional SEM images of lithium anodes in the NCM622||Li batteries after 200 cycles with (a) fresh lithium anode, (b) the blank electrolyte and (c) the 0.1% TB electrolyte.

Figure S6 Linear sweep voltammetry (LSV) curves for different electrolytes.

Figure S7 Cycling performance of the reassembled batteries with B_{-anode}, T_{-anode}, B_{-cathode}, and T₋ _{cathode} as electrodes, respectively.