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Point defect simulation:

The formation energy of a defect D at a charge state ‘@’ can be expressed as follows,
E oD% = E o[ D] = Eyo [pristine] - Zni”i +q(Eypy + AER) (1)

pristine]

q
Here, Etot[D ] is the total energy for a supercell associated with the aforementioned defect D. Bl is the total energy

of ther equivalent pristine bulk supercell. Hiis the chemical potential of the associated defect with n being the number of defects
added (ni > 0) to or removed (ni < 0) from the system. The next term accounts for the chemical potential of electrons added (9 <
0) to or removed (4 > 0) from the simulation box while creating various charged defect states. Eypu is the energy of the valence

band maxima. AEp is the Fermi level position, which can be varied from zero (at VBM) to the bandgap (E;) value (at CBM). In the
following section, we discuss the choice of defects and the choice of chemical potentials (chemical growth conditions) for the

constituents.

The charge transition levels (CTLs) are calculated by applying the Slater-Janak transition state theoryl, which assumes that Kohn-
Sham eigenvalues are linearly dependent on the orbital occupation numbers. This method can be seen as an alternative to the
correction schemes usually applied for charged defects and has been successfully used to predict the CTLs of various compounds
(further details of this method can be found elsewhere2’3).

In this study, we consider Cupy, Vg, and MA, individual point defects as well as Cupp+vg,, Cup,+MA;defect complexes. We see from
eqn. 1 that the defect formation energies vary with K. Experimentally, this chemical potential can vary depending on the growth
environment. That is, if a growth environment is anion/cation poor (rich), creating anion/cation vacancies will be easy (difficult)

and the opposite is true in the case of interstitials. Applying this basic understanding to eqn.(l) reveals to us that for an element

poor - rich
A, K4 K 4", The choice of chemical potentials for the constituent elements involved in Cu doping of MAPbBr; is therefore

quite important.



The choice of p generally depends on the stability of the compound against possible elemental and competing secondary phases.

As such, the following thermodynamic (in) equations must be satisfied,

Btyg + Bty + 30 = AH r(\apbgr,) (2)
Here, AHf is the formation enthalpy of MAPbBr3; against its elemental constituents.

0 0
Here, Ditg_ g - “A, where H4 is the total energy of constituent ‘A’ in its elemental phase. To avoid co-existence of elemental

and secondary phases, the following set of equations should also be satisfied,
Aty <0, A_vip, Pb, Br (3)
PRty aBitpy + T 8i5r Al P Br); b, g, 10, 1, 2.2 (4)

Here, as secondary phases we have considered the following compounds: MA, Pb, Br, MABr, and PbBr,. We have chosen two
possible scenarios namely- a) Pb rich/ Br poor and b) Pb poor / Br rich, and the corresponding chemical potential values of Cu are

taken as Dprey =0 (Cu elemental phase) and Dy - (AHf(CuBrz) -ZA“Br). The chemical potential values are tabulated below.

Table S1. Chemical potential values for constituent elements associated with different growth conditions.

Condition Pb rich / Br poor Pb poor/ Br rich
Attya -2.1701 eV -3.5609 eV
Apipy, 0eVv -2.7816 eV
Apg, -1.3908 eV 0eV
A, OeV -0.994 eV
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Fig. S1 Grain size distribution of (a) Pristine MAPbBr; thin film and (b) 40% Cu-doped MAPbBr; thin film.
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Fig. S2 EDS elemental mapping of Cu-doped MAPbBTr; thin films: Pb(Blue) and Cu (Red).
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Fig. S3 XRD pattern (log scale) for the (002) peak of MA,CuBr, perovskite at 20 = 9.2°.
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Fig. S4 Possible cubic crystal structures of 0, 25%, 50%, 75%, and 50% (with Br-vacancy) Cu-doped MAPbBr; perovskites.
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Fig. S5 Possible hexagonal (2H) crystal structures of 0, 25%, 50%, and 75% Cu-doped MAPbBr; perovskites.
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Fig. S6 Possible hexagonal (4H) crystal structures of 0, 25%, 50%, and 75% Cu-doped MAPbBr; perovskites.
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Fig. S7 Possible hexagonal (6H) crystal structures of 0 and 50% Cu-doped MAPbBr; perovskites.
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Fig. S8 XPS full spectra of Cu-alloyed MAPbBr; perovskites.
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Fig. S9 (a) Normalized XPS spectra of Cu2p;,,. XPS peaks area of Cu2p (b), Pb4f (c), and Br3d (d).



24

kel @ fos
234 °'_“‘—Gl-—'o"—---__c, ®
S_ = L 0.5
0 2.2 1 L 04 3
— m
Q +
g: 214 ¥, L03 =
35 e
c 204 0.2 =
g ) o
/ \ o -
1.94
o
o @ oo
18 r T : T T T
0 10 20 30 40 50

Cu-dopant concentration (%)

Fig. S10 Optical bandgap (obtained from absorption spectra) and Cu atomic% (obtained from EDS) as a function of Cu-dopant concentration.



(a) Energy (eV)

—
2,

2.342.32 2.30 2.28 2.25 2.23 2.21 2.19 2.18 2.16

s wl/oCu
~ = s 10%
3| % o 20%
S 3, s 30% P
> s ° 40% &
-‘u:', L 1 s 50% X
) ©
Sl o 3 o
£ \ i
=l 4 - od
| . %ig o
;sl L] Ll Ll L] Ll L] L]
530 535 540 545 550 555 560 565 570 575
Wavelength (nm)
Energy (eV)

2.34 230 225 221

218 214 210

(C) > % o wloCu

9 o 10%

2 5 o 20%

21 &% > 30%

Sl % > 40%

- > 50%

o 3 ’

g

Qo

N

©|

e

S

o

r4

530 540 550 560 570 580 590
Wavelength (nm)

Fig. S11 Room temperature PL spectra (a), PL peak area (b), normalized PL spectra (c), and enlarged image of normalized PL spectra (d) for different Cu-dopant

MAPbBr; perovskite thin films.
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Fig. S12 Arrhenius plots for activation energy estimation: (a) Pristine MAPbBr; and (b) 40% Cu-MAPbBr3. Zoom for region A (c) and regions B and C (d) for 40% Cu-

MAPbBr;.
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Fig. S13 Dependence of XRD peak (phase transition peak and MA,CuBr, peak) intensity ratio on time.
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Fig. S14 Photocurrent spectra of pristine (a), 10% (b), 20% (c), 30% (d), 40% (e), and 50% (f) doped MAPbBr; at room temperature.
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