Supporting Information for

Enhanced dual photo/thermal initiating systems for preparation of

few layer graphene filler-based composites and 3D printing

Qiang Ma,^{a,b,c} Michael Schmitt,^{a,b} Yijun Zhang, ^a Gautier Schrodj, ^a Loïc Vidal, ^a Elea Collanges,^d Dominique Begin^d and Jacques Lalevée ^{*,a,b}

^a Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.

^b Université de Strasbourg, F-67081 Strasbourg, France.

^c Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.

^d Université de Strasbourg, CNRS, ICPEES UMR7515 F-67081 Strasbourg, France E-mail: jacques.lalevee@uha.fr.

Materials and Experimental Section

Chemical Reagents:

The 2-benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone (Irgacure369) and imidazole (2-Ethyl-4-Methylimidazle, EMIM) were purchased from sigma-Aldrich or TCI Chemicals. Di-tert-butyl-diphenyl iodonium hexafluorophosphate (Iod) was obtained from Lambson Ltd (UK). Trimethylolpropane triacrylate (TMPTA) and Di(trimethylolpropane) tetraacrylate (TA) was purchased from Sartomer (France). All the reactants were selected with high purity and used as received.

The preparation of FLG formulations (Prepreg solution) :

Among the many types of synthesis used to produce graphene (or FLG), the one used by the ICPEES for several years is certainly the least polluting, the most productive and the one that makes it possible to obtain a material with very few defects. The synthesis is carried out by gentle exfoliation under ultrasound in the presence of a surfactant, in particular a phenolic acid which, thanks to its aromatic rings, is able to "click" on the carbon network.

"Expanded graphite (EG - Mersen group) was put in the monomer solution in the presence of tannic acid (TA) (EG/TA mass ratio = 2). The solution was then placed under continuous ultrasonic (sonotrode) under magnetic stirring: the instrument used was a "Branson" ultrasonic arm (Digital sonifier 550) with a maximum power of 550 W. The treatment time is 4 h with 25% amplification, i.e. a power of 137.5 W."

Typical size of the FLG particles is several μm (see Figure S1) and the number of layers is typically comprised between one and ten.

Figure S1. SEM picture of FLG.

Figure S2. Raman spectrum of FLG. The Figure shows a typical spectrum of high-quality FLG used in this study. The most intense peak is the G band that originates from the sp² bonded carbon atoms of the hexagonal lattice of a graphitic structure, and it is well visible around 1580 cm⁻¹. The D band, around 1350 cm⁻¹, is related to sp3 defects present in the sp² carbon atom network. ID/IG is very low attesting the high structural quality of the FLG.

Testing and characterization:

Real-Time Fourier Transformed Infrared Spectroscopy (RT-FTIR): The photopolymerization was evaluated by Real-Time Fourier Transformed Infrared Spectroscopy JASCO FTIR-4100. Specific procedure: the sample was either injected into a circular mold (10 mm inner diameter) that was pasted onto polypropylene film or laminated in-between two polypropylene film. Then it was

placed on a sample holder in a horizontal accessory (transmission mode). RT-FTIR was used to follow the C=C double bond conversion (functional groups of the two acrylates) versus time for polymerizations of 25 μ m thin laminated and 2.5 mm thick samples. For 25 μ m thin samples, the vibration peak of acrylate C=C double bond at ~1600 cm⁻¹; For 2.5 mm thick samples, the decrease of the C=C double bond at 6130–6200 cm⁻¹ was followed. A LED@405 nm having an intensity of 0.11 W/cm² at the sample position was used for the photo-polymerization experiments within the FTIR spectrometer.

DSC testing: Different formulations (\approx 10-30 mg) in the presence of CTCs were inserted in an aluminum 100 µL crucible. Thermal polymerization (Mettler-Toledo DSC) was carried out from 0 °C to 250 °C at a heating rate of 10 °C /min under nitrogen flow (100 mL/min). Conversion calculation: The heat released for acrylate double bond is $\Delta H_{\text{theory}} = 78.61$ kJ mol⁻¹ which leads to 795.9 J g⁻¹ and 674.8 J g⁻¹ for 100% of acrylate function conversion for TMPTA and TA, so final acrylate function conversion (FC) = (heat released g⁻¹)/795.9 or (heat released g⁻¹)/674.8 is obtained in thermal polymerization.

Thermal imaging camera information: an infrared thermal imaging camera Fluke TiX500.

The investigation of DoCs of composites:

First of all, taking Irgacure 369 (PI 369) as an example, we prepared the resin prepregs of TMPTA or TA (containing 2% or 4% graphene) within 2.5*10⁻⁵ mol/g PI 369 (or 5.5*10⁻⁵ mol/g CTC, based on 4 g monomer). Then it is mixed well by high speed stirring and keep stirring overnight for more homogeneous and the better formation of charge transfer complex. After that, in a LED-curing box, a mold filled with the investigated resin was placed vertically under the light (LED@405 nm for a certain time; 1 W/cm², the reaction setup was exhibited in Figure below (Figure S4, A), the distance from the samples of composite to the light source is about 5 cm). Flow diagram of the composite preparation was shown in Figure S4, B. The polymerized products were used to measure the Depth of Cure (DoC) with an Absolute LCD Digimatic Indicator (Mitutoyo).

Scanning electron microscope (SEM):

The graphene-containing morphology and their corresponding composites were investigated by scanning electron microscope (SEM) with a JEOL JSM-7900F microscope. All samples were prepared to obtain pellets with a thickness of around 1.5 mm and test the surface and cross-section of samples in various observation scales. (Sample preparation was performed as usual, referring to composite preparation of Depth of Cure (DoC) formulations and procedures)

Thermogravimetric analysis (TGA):

TGA was carried out using a METTLER-TOLEDO TGA/DSC 3+ thermoanalyzer. 30 mg of samples was heated from 30 to 800 °Cata scan rate of 10 °C/min under a N_2 atmosphere (purge of 100 mL/min of N_2 protection gas).

Dynamic thermomechanical analysis (DMA):

Sample preparations were performed based on 2% or 4% graphene-containing resins by combination of 2.5*10⁻⁵ mol/g Irg 369 and 5.5*10⁻⁵ mol/g CTC under the irradiation of LED@405 nm for a certain time. Then, all round samples were polished to obtain pellets with a thickness of around 1.5 mm, and then experiments were performed on a Visconalyse METTLER DMA 861at a frequency of 1.00 HZ.

DLW experiment: The letter patterns were produced through the computer-controlled movement of laser diode (CNI laser diode, wavelength: 405 nm and light intensity: 0.11 W, resins: 2.5 $*10^{-5}$ mol/g and 5.5 $*10^{-5}$ mol/g CTC(EMIM) in TMPTA or TA containing graphene fillers) (spot size \sim 50 µm, The x-y resolution can be 50 µm (size of the laser beam)) under air, the printing time is about 5 mins-10 mins, the y-axis is <2 mm and the pattern was characterized by numerical optical microscope (OLYMPUS DSX-HRSU).

Supplementary Figures:

Figure S3. Photopolymerization profiles for CTC (C=C bond conversion vs. irradiation time) (≈ 25 µm thickness) measured by RT-FTIR under 405 nm LED irradiation (the irradiation starts at t = 10 s, 0.11 W cm⁻²). resin: Irgacure 369 (2.5 × 10⁻⁵ mol g⁻¹ in monomer) or CTC (5.5 × 10⁻⁵ mol g⁻¹ in monomer) in 0.5% FLG-containing monomer.

Figure S4. A). Schematic diagram (left) and the original device diagram (right) of the light reaction set-up. B). Flow diagram of the composite preparation.

Figure S5. Scanning electron microscope (SEM) images of the photocomposites (A,B for poly(TMPTA) and C,D for poly(TA)). products with 2% graphene in the composite (left: cross-section and right: surface). The scale bar is 50-200 µm.

В

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Spectrum 1	1200 🐽 Construm 1						
$ \begin{bmatrix} c & c & c & c & c & c & c & c & c & c$		1000	Element	t App	Intensity	Weight%	Weight%	Atomic%
$ \begin{bmatrix} \frac{ }{ } \\ \frac$	Stratter por	800		Conc.	Corrn.		Sigma	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	1 Mariande Carl	e e e	СК	54.92	1.1842	60.82	0.99	67.40
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		400	ОК	9.52	0.3180	39.18	0.99	32.60
$\frac{\operatorname{Ret}_{n} + \operatorname{Ret}_{n} + \operatorname$			Totals			100.00]	
$ \begin{bmatrix} \operatorname{lement}_{\operatorname{App}} & \operatorname{Intensity}_{\operatorname{Weight3}}, \operatorname{Weight3}, \operatorname{Atomic}_{\operatorname{C}} \\ \hline C & Corc, Corr, Sigma \\ \hline C & Sigma $	Zógin Excitor lange 1 Greatern 1	Full Scale 1214 cts Cursor: 0.253 (1716 cts) keV						
$ \begin{array}{c} \hline \\ \hline $		1000	Element	App	Intensity	Weight%	Weight%	Atomic%
$ \begin{array}{c} \hline \\ \hline $		008		Conc.	Corrn.		Sigma	
$ \begin{array}{c} \hline \\ \hline $	in the second	600 0 🐢	СК	62.35	1.1826	60.81	0.92	67.39
$ \begin{array}{c} \hline \\ \hline $	F MARINE VE	400	ОК	10.82	0.3186	39.19	0.92	32.61
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	10 11-	· *• *• *	Totals			100.00		
$ \begin{bmatrix} C & C & C & C & C & C & C & C & C & C$	Spectrum (500 © Sjøttun 1 40	Element	App	Intensity	Weight%	Weight%	Atomic
$ \begin{bmatrix} C & K & 13.91 & 1.1228 & 56.36 & 1.76 & 63.24 \\ O & K & 3.32 & 0.3452 & 43.64 & 1.76 & 36.76 \\ \hline totals & 100.00 \\ \hline tota$		300		Conc.	Corrn.		Sigma	<u> </u>
$ \begin{bmatrix} O \\ S \\ 3.32 \\ 0.3452 \\ 43.64 \\ 1.76 \\ 36.76 \\ \hline totals \\ \hline t$		200	СК	13.91	1.1228	56.36	1.76	63.24
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		····	OK	3.32	0.3452	43.64	1.76	36.76
$ \begin{array}{c} O \\ k \\ 3.11 \\ 0.3314 \\ 41.46 \\ 1.74 \\ 34.71 \\ \hline tals \\ 100.00 \\ \end{array} \\ \hline \end{array} \\ \hline \\ D \\ \hline \\ D \\ \hline \\ \hline \\ D \\ \hline \\ \hline \\ \hline$	20pm Dedurings 1	500 Spattour 1 400 300 200	Element C K	App Conc. 15.25	Intensity Corrn. 1.1520	Weight% 58.54	Weight% Sigma 1.74	Atomic 65.29
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $		100	ОК	3.11	0.3314	41.46	1.74	34.71
$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$			Totals			100.00		
OK 7.77 0.3313 41.44 1.13 34.70	20un Dedar Hoge 1	2001 Sportburt	Element	Арр	Intensity	Weight%	Weight%	Atomic
Totals 100.00		1922	СК	Conc. 38.07	Corrn. 1.1522	58.56	Sigma 1.13	65.30
		1500 1000	C K O K	Conc. 38.07 7.77	Corrn. 1.1522 0.3313	58.56 41.44	Sigma 1.13 1.13	65.30 34.70

Contraction Starl	2000-Spectrum 1	Element	Арр	Intensity	Weight%	Weight%	Atomic%
A. A. B. C. A.	1500-		Conc.	Corrn.		Sigma	
Detter and the second	1000	C K	33.95	1.1470	58.07	1.22	65.00
	•	ОК	6.98	0.3294	41.47	1.23	34.85
1.6.5. 10.1		Ca K	0.24	1.0248	0.45	0.06	0.15
	0 1 2 3 4 5 6 7 8 9 10 11 Full Scale 2049 cts Curser: -0.026 (1353 cts) keV	Totals			100.00]	

Figure S6. Energy Dispersive X-Ray Spectroscopy (EDX) analysis for the surface of photocomposites [A: 0% and B: 2% graphene content for poly(TMPTA); C: 0% and D: 2% graphene content for poly(TA)].

Figure S7. TGA tests for the photocomposites [poly(TMPTA) and poly(TA)] containing 0%, 2%, 4% (w%) graphene filler.

Figure S8. DMA tests at 25°C for the photocomposites [poly(TMPTA) and poly(TA)] containing 0%, 2%, 4% (w%) graphene filler.

Figure S9. Optical microscopy of 3D patterns printed from TA with 2% graphene content. (A). Top

surface morphology and (B,C). 3D overall appearance in black and color patterns. The scale bar is 2000 μ m (A is 400 μ m).